Proof of Theorem u5lemc4
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. 2
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 2 | | ulemc3.1 |
. . . . . . 7
a C b |
| 3 | | comid 187 |
. . . . . . . 8
a C a |
| 4 | 3 | comcom2 183 |
. . . . . . 7
a C a⊥ |
| 5 | 2, 4 | fh2r 474 |
. . . . . 6
((a ∪ a⊥ ) ∩ b) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 6 | 5 | ax-r1 35 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a ∪
a⊥ ) ∩ b) |
| 7 | | ancom 74 |
. . . . . 6
((a ∪ a⊥ ) ∩ b) = (b ∩
(a ∪ a⊥ )) |
| 8 | | df-t 41 |
. . . . . . . . 9
1 = (a ∪ a⊥ ) |
| 9 | 8 | ax-r1 35 |
. . . . . . . 8
(a ∪ a⊥ ) = 1 |
| 10 | 9 | lan 77 |
. . . . . . 7
(b ∩ (a ∪ a⊥ )) = (b ∩ 1) |
| 11 | | an1 106 |
. . . . . . 7
(b ∩ 1) = b |
| 12 | 10, 11 | ax-r2 36 |
. . . . . 6
(b ∩ (a ∪ a⊥ )) = b |
| 13 | 7, 12 | ax-r2 36 |
. . . . 5
((a ∪ a⊥ ) ∩ b) = b |
| 14 | 6, 13 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) = b |
| 15 | 14 | ax-r5 38 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (b ∪ (a⊥ ∩ b⊥ )) |
| 16 | 2 | comcom3 454 |
. . . . 5
a⊥ C
b |
| 17 | 2 | comcom4 455 |
. . . . 5
a⊥ C
b⊥ |
| 18 | 16, 17 | fh4 472 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) = ((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) |
| 19 | | ax-a2 31 |
. . . . . 6
(b ∪ a⊥ ) = (a⊥ ∪ b) |
| 20 | | df-t 41 |
. . . . . . 7
1 = (b ∪ b⊥ ) |
| 21 | 20 | ax-r1 35 |
. . . . . 6
(b ∪ b⊥ ) = 1 |
| 22 | 19, 21 | 2an 79 |
. . . . 5
((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) = ((a⊥ ∪ b) ∩ 1) |
| 23 | | an1 106 |
. . . . 5
((a⊥ ∪ b) ∩ 1) = (a⊥ ∪ b) |
| 24 | 22, 23 | ax-r2 36 |
. . . 4
((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) = (a⊥ ∪ b) |
| 25 | 18, 24 | ax-r2 36 |
. . 3
(b ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ b) |
| 26 | 15, 25 | ax-r2 36 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∪ b) |
| 27 | 1, 26 | ax-r2 36 |
1
(a →5 b) = (a⊥ ∪ b) |