Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oridm | GIF version |
Description: Idempotent law. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
oridm | (a ∪ a) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
2 | or0 102 | . . . . . 6 (a⊥ ∪ 0) = a⊥ | |
3 | 2 | ax-r1 35 | . . . . 5 a⊥ = (a⊥ ∪ 0) |
4 | 3 | ax-r4 37 | . . . 4 a⊥ ⊥ = (a⊥ ∪ 0)⊥ |
5 | 1, 4 | ax-r2 36 | . . 3 a = (a⊥ ∪ 0)⊥ |
6 | 5 | lor 70 | . 2 (a ∪ a) = (a ∪ (a⊥ ∪ 0)⊥ ) |
7 | ax-a5 34 | . 2 (a ∪ (a⊥ ∪ 0)⊥ ) = a | |
8 | 6, 7 | ax-r2 36 | 1 (a ∪ a) = a |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 0wf 9 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-t 41 df-f 42 |
This theorem is referenced by: anidm 111 orordi 112 orordir 113 omlem1 127 bile 142 lel2or 170 ler2or 172 ledi 174 ledio 176 comid 187 ska15 244 wql1 293 womle2a 295 wbile 401 wledi 405 wledio 406 ka4ot 435 lem3a.1 444 i3bi 496 dfi3b 499 lem4 511 binr3 519 i3abs1 522 i3th5 547 ud1lem3 562 ud4lem2 582 ud5lem3 594 u1lemona 625 u2lemob 631 u3lemob 632 u4lemob 633 u4lem4 759 u5lem4 760 u3lem6 767 u4lem6 768 u5lem6 769 u3lem9 784 biao 799 3vth5 808 3vth6 809 3vth9 812 3vded21 817 3vded22 818 3vroa 831 oau 929 oa23 936 distoa 944 oa3-2lema 978 oa3-2lemb 979 oa3-5lem 984 d3oa 995 oagen1 1014 oadistd 1023 4oagen1 1042 4oadist 1044 ml3le 1129 dp15lema 1154 xdp15 1199 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |