| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u5lemnaa | GIF version | ||
| Description: Lemma for relevance implication study. (Contributed by NM, 15-Dec-1997.) |
| Ref | Expression |
|---|---|
| u5lemnaa | ((a →5 b)⊥ ∩ a) = (a ∩ (a⊥ ∪ b⊥ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor2 89 | . 2 ((a →5 b)⊥ ∩ a) = ((a →5 b) ∪ a⊥ )⊥ | |
| 2 | u5lemona 629 | . . . 4 ((a →5 b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) | |
| 3 | 2 | ax-r4 37 | . . 3 ((a →5 b) ∪ a⊥ )⊥ = (a⊥ ∪ (a ∩ b))⊥ |
| 4 | anor1 88 | . . . . 5 (a ∩ (a ∩ b)⊥ ) = (a⊥ ∪ (a ∩ b))⊥ | |
| 5 | 4 | ax-r1 35 | . . . 4 (a⊥ ∪ (a ∩ b))⊥ = (a ∩ (a ∩ b)⊥ ) |
| 6 | df-a 40 | . . . . . 6 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
| 7 | 6 | con2 67 | . . . . 5 (a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
| 8 | 7 | lan 77 | . . . 4 (a ∩ (a ∩ b)⊥ ) = (a ∩ (a⊥ ∪ b⊥ )) |
| 9 | 5, 8 | ax-r2 36 | . . 3 (a⊥ ∪ (a ∩ b))⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
| 10 | 3, 9 | ax-r2 36 | . 2 ((a →5 b) ∪ a⊥ )⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
| 11 | 1, 10 | ax-r2 36 | 1 ((a →5 b)⊥ ∩ a) = (a ∩ (a⊥ ∪ b⊥ )) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →5 wi5 16 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i5 48 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |