Proof of Theorem u5lemona
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 2 | 1 | ax-r5 38 |
. 2
((a →5 b) ∪ a⊥ ) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) |
| 3 | | ax-a3 32 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 4 | 3 | ax-r5 38 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) = (((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a⊥ ) |
| 5 | | ax-a3 32 |
. . . 4
(((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a⊥ ) = ((a ∩ b) ∪
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ )) |
| 6 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b) ≤ a⊥ |
| 7 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) ≤ a⊥ |
| 8 | 6, 7 | lel2or 170 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
| 9 | 8 | df-le2 131 |
. . . . . 6
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) = a⊥ |
| 10 | 9 | lor 70 |
. . . . 5
((a ∩ b) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ )) = ((a ∩ b) ∪
a⊥ ) |
| 11 | | ax-a2 31 |
. . . . 5
((a ∩ b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
| 12 | 10, 11 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ )) = (a⊥ ∪ (a ∩ b)) |
| 13 | 5, 12 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
| 14 | 4, 13 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
| 15 | 2, 14 | ax-r2 36 |
1
((a →5 b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |