Proof of Theorem u5lemoa
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
2 | 1 | ax-r5 38 |
. 2
((a →5 b) ∪ a) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
3 | | ax-a2 31 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) |
4 | | ax-a3 32 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
5 | 4 | lor 70 |
. . . 4
(a ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a
∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
6 | | ax-a3 32 |
. . . . . 6
((a ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a
∩ b) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) |
7 | 6 | ax-r1 35 |
. . . . 5
(a ∪ ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = ((a ∪ (a ∩
b)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
8 | | orabs 120 |
. . . . . 6
(a ∪ (a ∩ b)) =
a |
9 | 8 | ax-r5 38 |
. . . . 5
((a ∪ (a ∩ b))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | 7, 9 | ax-r2 36 |
. . . 4
(a ∪ ((a ∩ b) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
11 | 5, 10 | ax-r2 36 |
. . 3
(a ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
12 | 3, 11 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
13 | 2, 12 | ax-r2 36 |
1
((a →5 b) ∪ a) =
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |