Proof of Theorem u4lemoa
Step | Hyp | Ref
| Expression |
1 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
2 | 1 | ax-r5 38 |
. 2
((a →4 b) ∪ a) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ a) |
3 | | ax-a3 32 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ a) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∪ a)) |
4 | | comor1 461 |
. . . . . . . 8
(a⊥ ∪ b) C a⊥ |
5 | 4 | comcom7 460 |
. . . . . . 7
(a⊥ ∪ b) C a |
6 | | comor2 462 |
. . . . . . . 8
(a⊥ ∪ b) C b |
7 | 6 | comcom2 183 |
. . . . . . 7
(a⊥ ∪ b) C b⊥ |
8 | 5, 7 | fh4r 476 |
. . . . . 6
(((a⊥ ∪
b) ∩ b⊥ ) ∪ a) = (((a⊥ ∪ b) ∪ a)
∩ (b⊥ ∪ a)) |
9 | | or32 82 |
. . . . . . . . 9
((a⊥ ∪ b) ∪ a) =
((a⊥ ∪ a) ∪ b) |
10 | | ax-a2 31 |
. . . . . . . . . 10
((a⊥ ∪ a) ∪ b) =
(b ∪ (a⊥ ∪ a)) |
11 | | df-t 41 |
. . . . . . . . . . . . . 14
1 = (a ∪ a⊥ ) |
12 | | ax-a2 31 |
. . . . . . . . . . . . . 14
(a ∪ a⊥ ) = (a⊥ ∪ a) |
13 | 11, 12 | ax-r2 36 |
. . . . . . . . . . . . 13
1 = (a⊥ ∪
a) |
14 | 13 | lor 70 |
. . . . . . . . . . . 12
(b ∪ 1) = (b ∪ (a⊥ ∪ a)) |
15 | 14 | ax-r1 35 |
. . . . . . . . . . 11
(b ∪ (a⊥ ∪ a)) = (b ∪
1) |
16 | | or1 104 |
. . . . . . . . . . 11
(b ∪ 1) = 1 |
17 | 15, 16 | ax-r2 36 |
. . . . . . . . . 10
(b ∪ (a⊥ ∪ a)) = 1 |
18 | 10, 17 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ a) ∪ b) =
1 |
19 | 9, 18 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∪ b) ∪ a) =
1 |
20 | 19 | ran 78 |
. . . . . . 7
(((a⊥ ∪
b) ∪ a) ∩ (b⊥ ∪ a)) = (1 ∩ (b⊥ ∪ a)) |
21 | | ancom 74 |
. . . . . . . 8
(1 ∩ (b⊥ ∪
a)) = ((b⊥ ∪ a) ∩ 1) |
22 | | an1 106 |
. . . . . . . 8
((b⊥ ∪ a) ∩ 1) = (b⊥ ∪ a) |
23 | 21, 22 | ax-r2 36 |
. . . . . . 7
(1 ∩ (b⊥ ∪
a)) = (b⊥ ∪ a) |
24 | 20, 23 | ax-r2 36 |
. . . . . 6
(((a⊥ ∪
b) ∪ a) ∩ (b⊥ ∪ a)) = (b⊥ ∪ a) |
25 | 8, 24 | ax-r2 36 |
. . . . 5
(((a⊥ ∪
b) ∩ b⊥ ) ∪ a) = (b⊥ ∪ a) |
26 | 25 | lor 70 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∪ a)) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (b⊥ ∪ a)) |
27 | | ax-a3 32 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b⊥ ∪ a)) = ((a ∩
b) ∪ ((a⊥ ∩ b) ∪ (b⊥ ∪ a))) |
28 | | ax-a2 31 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (b⊥ ∪ a)) = ((b⊥ ∪ a) ∪ (a⊥ ∩ b)) |
29 | | ancom 74 |
. . . . . . . . . . 11
(a⊥ ∩ b) = (b ∩
a⊥ ) |
30 | | anor1 88 |
. . . . . . . . . . 11
(b ∩ a⊥ ) = (b⊥ ∪ a)⊥ |
31 | 29, 30 | ax-r2 36 |
. . . . . . . . . 10
(a⊥ ∩ b) = (b⊥ ∪ a)⊥ |
32 | 31 | lor 70 |
. . . . . . . . 9
((b⊥ ∪ a) ∪ (a⊥ ∩ b)) = ((b⊥ ∪ a) ∪ (b⊥ ∪ a)⊥ ) |
33 | | df-t 41 |
. . . . . . . . . 10
1 = ((b⊥ ∪
a) ∪ (b⊥ ∪ a)⊥ ) |
34 | 33 | ax-r1 35 |
. . . . . . . . 9
((b⊥ ∪ a) ∪ (b⊥ ∪ a)⊥ ) = 1 |
35 | 32, 34 | ax-r2 36 |
. . . . . . . 8
((b⊥ ∪ a) ∪ (a⊥ ∩ b)) = 1 |
36 | 28, 35 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b) ∪ (b⊥ ∪ a)) = 1 |
37 | 36 | lor 70 |
. . . . . 6
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (b⊥ ∪ a))) = ((a ∩
b) ∪ 1) |
38 | | or1 104 |
. . . . . 6
((a ∩ b) ∪ 1) = 1 |
39 | 37, 38 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ (b⊥ ∪ a))) = 1 |
40 | 27, 39 | ax-r2 36 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b⊥ ∪ a)) = 1 |
41 | 26, 40 | ax-r2 36 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (((a⊥ ∪ b) ∩ b⊥ ) ∪ a)) = 1 |
42 | 3, 41 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∪ a) = 1 |
43 | 2, 42 | ax-r2 36 |
1
((a →4 b) ∪ a) =
1 |