QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ublemc2 GIF version

Theorem ublemc2 729
Description: Commutation theorem for biimplication. (Contributed by NM, 19-Sep-1998.)
Assertion
Ref Expression
ublemc2 b C (ab)

Proof of Theorem ublemc2
StepHypRef Expression
1 ublemc1 728 . 2 b C (ba)
2 bicom 96 . 2 (ba) = (ab)
31, 2cbtr 182 1 b C (ab)
Colors of variables: term
Syntax hints:   C wc 3  tb 5
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator