Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > cbtr | GIF version |
Description: Transitive inference. (Contributed by NM, 30-Aug-1997.) |
Ref | Expression |
---|---|
cbtr.1 | a C b |
cbtr.2 | b = c |
Ref | Expression |
---|---|
cbtr | a C c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbtr.1 | . . . 4 a C b | |
2 | 1 | df-c2 133 | . . 3 a = ((a ∩ b) ∪ (a ∩ b⊥ )) |
3 | cbtr.2 | . . . . 5 b = c | |
4 | 3 | lan 77 | . . . 4 (a ∩ b) = (a ∩ c) |
5 | 3 | ax-r4 37 | . . . . 5 b⊥ = c⊥ |
6 | 5 | lan 77 | . . . 4 (a ∩ b⊥ ) = (a ∩ c⊥ ) |
7 | 4, 6 | 2or 72 | . . 3 ((a ∩ b) ∪ (a ∩ b⊥ )) = ((a ∩ c) ∪ (a ∩ c⊥ )) |
8 | 2, 7 | ax-r2 36 | . 2 a = ((a ∩ c) ∪ (a ∩ c⊥ )) |
9 | 8 | df-c1 132 | 1 a C c |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-c1 132 df-c2 133 |
This theorem is referenced by: comid 187 com2an 484 combi 485 nbdi 486 gsth 489 gsth2 490 gstho 491 i3bi 496 comi31 508 com2i3 509 u1lemc1 680 u2lemc1 681 u4lemc1 683 u5lemc1 684 u5lemc1b 685 u1lemc2 686 u2lemc2 687 u4lemc2 689 u5lemc2 690 comi12 707 ublemc2 729 1oa 820 2oath1 826 mlalem 832 orbi 842 comanbn 873 oacom 1011 oacom3 1013 |
Copyright terms: Public domain | W3C validator |