Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud4lem0b | GIF version |
Description: Introduce →4 to the right. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud4lem0a.1 | a = b |
Ref | Expression |
---|---|
ud4lem0b | (a →4 c) = (b →4 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud4lem0a.1 | . . . . 5 a = b | |
2 | 1 | ran 78 | . . . 4 (a ∩ c) = (b ∩ c) |
3 | 1 | ax-r4 37 | . . . . 5 a⊥ = b⊥ |
4 | 3 | ran 78 | . . . 4 (a⊥ ∩ c) = (b⊥ ∩ c) |
5 | 2, 4 | 2or 72 | . . 3 ((a ∩ c) ∪ (a⊥ ∩ c)) = ((b ∩ c) ∪ (b⊥ ∩ c)) |
6 | 3 | ax-r5 38 | . . . 4 (a⊥ ∪ c) = (b⊥ ∪ c) |
7 | 6 | ran 78 | . . 3 ((a⊥ ∪ c) ∩ c⊥ ) = ((b⊥ ∪ c) ∩ c⊥ ) |
8 | 5, 7 | 2or 72 | . 2 (((a ∩ c) ∪ (a⊥ ∩ c)) ∪ ((a⊥ ∪ c) ∩ c⊥ )) = (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ ((b⊥ ∪ c) ∩ c⊥ )) |
9 | df-i4 47 | . 2 (a →4 c) = (((a ∩ c) ∪ (a⊥ ∩ c)) ∪ ((a⊥ ∪ c) ∩ c⊥ )) | |
10 | df-i4 47 | . 2 (b →4 c) = (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ ((b⊥ ∪ c) ∩ c⊥ )) | |
11 | 8, 9, 10 | 3tr1 63 | 1 (a →4 c) = (b →4 c) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i4 47 |
This theorem is referenced by: i4i3 271 ud4 598 |
Copyright terms: Public domain | W3C validator |