Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud4 | GIF version |
Description: Unified disjunction for non-tollens implication. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud4 | (a ∪ b) = ((a →4 b) →4 (((a →4 b) →4 (b →4 a)) →4 a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud4lem1 581 | . . . . . 6 ((a →4 b) →4 (b →4 a)) = (a ∪ (a⊥ ∩ b⊥ )) | |
2 | 1 | ud4lem0b 263 | . . . . 5 (((a →4 b) →4 (b →4 a)) →4 a) = ((a ∪ (a⊥ ∩ b⊥ )) →4 a) |
3 | ud4lem2 582 | . . . . 5 ((a ∪ (a⊥ ∩ b⊥ )) →4 a) = (a ∪ b) | |
4 | 2, 3 | ax-r2 36 | . . . 4 (((a →4 b) →4 (b →4 a)) →4 a) = (a ∪ b) |
5 | 4 | ud4lem0a 262 | . . 3 ((a →4 b) →4 (((a →4 b) →4 (b →4 a)) →4 a)) = ((a →4 b) →4 (a ∪ b)) |
6 | ud4lem3 585 | . . 3 ((a →4 b) →4 (a ∪ b)) = (a ∪ b) | |
7 | 5, 6 | ax-r2 36 | . 2 ((a →4 b) →4 (((a →4 b) →4 (b →4 a)) →4 a)) = (a ∪ b) |
8 | 7 | ax-r1 35 | 1 (a ∪ b) = ((a →4 b) →4 (((a →4 b) →4 (b →4 a)) →4 a)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |