| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem0a | GIF version | ||
| Description: Introduce →4 to the left. (Contributed by NM, 23-Nov-1997.) |
| Ref | Expression |
|---|---|
| ud4lem0a.1 | a = b |
| Ref | Expression |
|---|---|
| ud4lem0a | (c →4 a) = (c →4 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud4lem0a.1 | . . . . 5 a = b | |
| 2 | 1 | lan 77 | . . . 4 (c ∩ a) = (c ∩ b) |
| 3 | 1 | lan 77 | . . . 4 (c⊥ ∩ a) = (c⊥ ∩ b) |
| 4 | 2, 3 | 2or 72 | . . 3 ((c ∩ a) ∪ (c⊥ ∩ a)) = ((c ∩ b) ∪ (c⊥ ∩ b)) |
| 5 | 1 | lor 70 | . . . 4 (c⊥ ∪ a) = (c⊥ ∪ b) |
| 6 | 1 | ax-r4 37 | . . . 4 a⊥ = b⊥ |
| 7 | 5, 6 | 2an 79 | . . 3 ((c⊥ ∪ a) ∩ a⊥ ) = ((c⊥ ∪ b) ∩ b⊥ ) |
| 8 | 4, 7 | 2or 72 | . 2 (((c ∩ a) ∪ (c⊥ ∩ a)) ∪ ((c⊥ ∪ a) ∩ a⊥ )) = (((c ∩ b) ∪ (c⊥ ∩ b)) ∪ ((c⊥ ∪ b) ∩ b⊥ )) |
| 9 | df-i4 47 | . 2 (c →4 a) = (((c ∩ a) ∪ (c⊥ ∩ a)) ∪ ((c⊥ ∪ a) ∩ a⊥ )) | |
| 10 | df-i4 47 | . 2 (c →4 b) = (((c ∩ b) ∪ (c⊥ ∩ b)) ∪ ((c⊥ ∪ b) ∩ b⊥ )) | |
| 11 | 8, 9, 10 | 3tr1 63 | 1 (c →4 a) = (c →4 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →4 wi4 15 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i4 47 |
| This theorem is referenced by: i4i3 271 nom43 328 ud4 598 |
| Copyright terms: Public domain | W3C validator |