| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i4i3 | GIF version | ||
| Description: Correspondence between Kalmbach and non-tollens conditionals. (Contributed by NM, 7-Feb-1999.) |
| Ref | Expression |
|---|---|
| i4i3 | (a →4 b) = (b⊥ →3 a⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a1 30 | . . . 4 b = b⊥ ⊥ | |
| 2 | 1 | ud4lem0a 262 | . . 3 (a →4 b) = (a →4 b⊥ ⊥ ) |
| 3 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
| 4 | 3 | ud4lem0b 263 | . . 3 (a →4 b⊥ ⊥ ) = (a⊥ ⊥ →4 b⊥ ⊥ ) |
| 5 | 2, 4 | ax-r2 36 | . 2 (a →4 b) = (a⊥ ⊥ →4 b⊥ ⊥ ) |
| 6 | i3i4 270 | . . 3 (b⊥ →3 a⊥ ) = (a⊥ ⊥ →4 b⊥ ⊥ ) | |
| 7 | 6 | ax-r1 35 | . 2 (a⊥ ⊥ →4 b⊥ ⊥ ) = (b⊥ →3 a⊥ ) |
| 8 | 5, 7 | ax-r2 36 | 1 (a →4 b) = (b⊥ →3 a⊥ ) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 →3 wi3 14 →4 wi4 15 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i3 46 df-i4 47 |
| This theorem is referenced by: nom44 329 dfi4b 500 |
| Copyright terms: Public domain | W3C validator |