QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i4i3 GIF version

Theorem i4i3 271
Description: Correspondence between Kalmbach and non-tollens conditionals. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
i4i3 (a4 b) = (b3 a )

Proof of Theorem i4i3
StepHypRef Expression
1 ax-a1 30 . . . 4 b = b
21ud4lem0a 262 . . 3 (a4 b) = (a4 b )
3 ax-a1 30 . . . 4 a = a
43ud4lem0b 263 . . 3 (a4 b ) = (a 4 b )
52, 4ax-r2 36 . 2 (a4 b) = (a 4 b )
6 i3i4 270 . . 3 (b3 a ) = (a 4 b )
76ax-r1 35 . 2 (a 4 b ) = (b3 a )
85, 7ax-r2 36 1 (a4 b) = (b3 a )
Colors of variables: term
Syntax hints:   = wb 1   wn 4  3 wi3 14  4 wi4 15
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i3 46  df-i4 47
This theorem is referenced by:  nom44  329  dfi4b  500
  Copyright terms: Public domain W3C validator