QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  vneulem1 GIF version

Theorem vneulem1 1131
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
Assertion
Ref Expression
vneulem1 (((xy) ∪ u) ∩ w) = (((xy) ∪ u) ∩ ((uw) ∩ w))

Proof of Theorem vneulem1
StepHypRef Expression
1 leor 159 . . . 4 w ≤ (uw)
2 leid 148 . . . 4 ww
31, 2ler2an 173 . . 3 w ≤ ((uw) ∩ w)
4 lear 161 . . 3 ((uw) ∩ w) ≤ w
53, 4lebi 145 . 2 w = ((uw) ∩ w)
65lan 77 1 (((xy) ∪ u) ∩ w) = (((xy) ∪ u) ∩ ((uw) ∩ w))
Colors of variables: term
Syntax hints:   = wb 1  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  vneulem4  1134
  Copyright terms: Public domain W3C validator