| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > vneulem1 | GIF version | ||
| Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| vneulem1 | (((x ∪ y) ∪ u) ∩ w) = (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leor 159 | . . . 4 w ≤ (u ∪ w) | |
| 2 | leid 148 | . . . 4 w ≤ w | |
| 3 | 1, 2 | ler2an 173 | . . 3 w ≤ ((u ∪ w) ∩ w) |
| 4 | lear 161 | . . 3 ((u ∪ w) ∩ w) ≤ w | |
| 5 | 3, 4 | lebi 145 | . 2 w = ((u ∪ w) ∩ w) |
| 6 | 5 | lan 77 | 1 (((x ∪ y) ∪ u) ∩ w) = (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) |
| Colors of variables: term |
| Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: vneulem4 1134 |
| Copyright terms: Public domain | W3C validator |