Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > leid | GIF version |
Description: Identity law for "less than or equal to". (Contributed by NM, 24-Dec-1998.) |
Ref | Expression |
---|---|
leid | a ≤ a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 59 | . 2 a = a | |
2 | 1 | bile 142 | 1 a ≤ a |
Colors of variables: term |
Syntax hints: ≤ wle 2 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-t 41 df-f 42 df-le1 130 |
This theorem is referenced by: bi1o1a 798 i2i1i1 800 1oa 820 negantlem2 849 mhlem 876 oago3.21x 890 gomaex3h6 907 gomaex3h9 910 gomaex3lem2 915 oaur 930 oa4btoc 966 oa3-u2lem 986 oa3-6to3 987 oa3-2to4 988 oa3-u1 991 oa3-1to5 993 d3oa 995 d4oa 996 lem3.3.7i4e1 1069 lem3.3.7i4e2 1070 lem3.3.7i5e1 1072 lem4.6.6i0j1 1088 lem4.6.6i0j2 1089 lem4.6.6i0j3 1090 lem4.6.6i0j4 1091 lem4.6.6i2j4 1097 lem4.6.6i3j0 1098 lem4.6.6i3j1 1099 lem4.6.6i4j2 1101 com3iia 1102 lem4.6.7 1103 mldual2i 1127 vneulem1 1131 vneulem13 1143 vneulemexp 1148 dp53lema 1163 dp35lem0 1179 xdp53 1200 xxdp53 1203 xdp43lem 1205 xdp43 1207 3dp43 1208 |
Copyright terms: Public domain | W3C validator |