Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > vneulem4 | GIF version |
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.) |
Ref | Expression |
---|---|
vneulem3.1 | ((x ∪ y) ∩ (u ∪ w)) = 0 |
Ref | Expression |
---|---|
vneulem4 | (((x ∪ y) ∪ u) ∩ w) = (u ∩ w) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vneulem1 1131 | . 2 (((x ∪ y) ∪ u) ∩ w) = (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) | |
2 | vneulem2 1132 | . 2 (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) = ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) | |
3 | vneulem3.1 | . . 3 ((x ∪ y) ∩ (u ∪ w)) = 0 | |
4 | 3 | vneulem3 1133 | . 2 ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) = (u ∩ w) |
5 | 1, 2, 4 | 3tr 65 | 1 (((x ∪ y) ∪ u) ∩ w) = (u ∩ w) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 0wf 9 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: vneulem6 1136 vneulem9 1139 |
Copyright terms: Public domain | W3C validator |