Proof of Theorem vneulem2
Step | Hyp | Ref
| Expression |
1 | | anass 76 |
. . 3
((((x ∪ y) ∪ u)
∩ (u ∪ w)) ∩ w) =
(((x ∪ y) ∪ u)
∩ ((u ∪ w) ∩ w)) |
2 | 1 | cm 61 |
. 2
(((x ∪ y) ∪ u)
∩ ((u ∪ w) ∩ w)) =
((((x ∪ y) ∪ u)
∩ (u ∪ w)) ∩ w) |
3 | | ax-a2 31 |
. . . . 5
((x ∪ y) ∪ u) =
(u ∪ (x ∪ y)) |
4 | 3 | ran 78 |
. . . 4
(((x ∪ y) ∪ u)
∩ (u ∪ w)) = ((u ∪
(x ∪ y)) ∩ (u
∪ w)) |
5 | | ml 1123 |
. . . . 5
(u ∪ ((x ∪ y) ∩
(u ∪ w))) = ((u ∪
(x ∪ y)) ∩ (u
∪ w)) |
6 | 5 | cm 61 |
. . . 4
((u ∪ (x ∪ y))
∩ (u ∪ w)) = (u ∪
((x ∪ y) ∩ (u
∪ w))) |
7 | | orcom 73 |
. . . 4
(u ∪ ((x ∪ y) ∩
(u ∪ w))) = (((x
∪ y) ∩ (u ∪ w))
∪ u) |
8 | 4, 6, 7 | 3tr 65 |
. . 3
(((x ∪ y) ∪ u)
∩ (u ∪ w)) = (((x ∪
y) ∩ (u ∪ w))
∪ u) |
9 | 8 | ran 78 |
. 2
((((x ∪ y) ∪ u)
∩ (u ∪ w)) ∩ w) =
((((x ∪ y) ∩ (u
∪ w)) ∪ u) ∩ w) |
10 | 2, 9 | tr 62 |
1
(((x ∪ y) ∪ u)
∩ ((u ∪ w) ∩ w)) =
((((x ∪ y) ∩ (u
∪ w)) ∪ u) ∩ w) |