![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > vneulem2 | GIF version |
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.) |
Ref | Expression |
---|---|
vneulem2 | (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) = ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 76 | . . 3 ((((x ∪ y) ∪ u) ∩ (u ∪ w)) ∩ w) = (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) | |
2 | 1 | cm 61 | . 2 (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) = ((((x ∪ y) ∪ u) ∩ (u ∪ w)) ∩ w) |
3 | ax-a2 31 | . . . . 5 ((x ∪ y) ∪ u) = (u ∪ (x ∪ y)) | |
4 | 3 | ran 78 | . . . 4 (((x ∪ y) ∪ u) ∩ (u ∪ w)) = ((u ∪ (x ∪ y)) ∩ (u ∪ w)) |
5 | ml 1123 | . . . . 5 (u ∪ ((x ∪ y) ∩ (u ∪ w))) = ((u ∪ (x ∪ y)) ∩ (u ∪ w)) | |
6 | 5 | cm 61 | . . . 4 ((u ∪ (x ∪ y)) ∩ (u ∪ w)) = (u ∪ ((x ∪ y) ∩ (u ∪ w))) |
7 | orcom 73 | . . . 4 (u ∪ ((x ∪ y) ∩ (u ∪ w))) = (((x ∪ y) ∩ (u ∪ w)) ∪ u) | |
8 | 4, 6, 7 | 3tr 65 | . . 3 (((x ∪ y) ∪ u) ∩ (u ∪ w)) = (((x ∪ y) ∩ (u ∪ w)) ∪ u) |
9 | 8 | ran 78 | . 2 ((((x ∪ y) ∪ u) ∩ (u ∪ w)) ∩ w) = ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) |
10 | 2, 9 | tr 62 | 1 (((x ∪ y) ∪ u) ∩ ((u ∪ w) ∩ w)) = ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: vneulem4 1134 |
Copyright terms: Public domain | W3C validator |