Proof of Theorem vneulem13
Step | Hyp | Ref
| Expression |
1 | | leao1 162 |
. . . . . . 7
(a ∩ b) ≤ (a ∪
b) |
2 | | leid 148 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
b) |
3 | 1, 2 | ler2an 173 |
. . . . . 6
(a ∩ b) ≤ ((a
∪ b) ∩ (a ∩ b)) |
4 | | lear 161 |
. . . . . 6
((a ∪ b) ∩ (a
∩ b)) ≤ (a ∩ b) |
5 | 3, 4 | lebi 145 |
. . . . 5
(a ∩ b) = ((a ∪
b) ∩ (a ∩ b)) |
6 | 5 | lor 70 |
. . . 4
((c ∪ d) ∪ (a
∩ b)) = ((c ∪ d) ∪
((a ∪ b) ∩ (a
∩ b))) |
7 | 6 | lan 77 |
. . 3
((a ∪ b) ∩ ((c
∪ d) ∪ (a ∩ b))) =
((a ∪ b) ∩ ((c
∪ d) ∪ ((a ∪ b) ∩
(a ∩ b)))) |
8 | | mldual 1124 |
. . 3
((a ∪ b) ∩ ((c
∪ d) ∪ ((a ∪ b) ∩
(a ∩ b)))) = (((a
∪ b) ∩ (c ∪ d))
∪ ((a ∪ b) ∩ (a
∩ b))) |
9 | | vneulem13.1 |
. . . . 5
((a ∪ b) ∩ (c
∪ d)) = 0 |
10 | 4, 3 | lebi 145 |
. . . . 5
((a ∪ b) ∩ (a
∩ b)) = (a ∩ b) |
11 | 9, 10 | 2or 72 |
. . . 4
(((a ∪ b) ∩ (c
∪ d)) ∪ ((a ∪ b) ∩
(a ∩ b))) = (0 ∪ (a ∩ b)) |
12 | | or0r 103 |
. . . 4
(0 ∪ (a ∩ b)) = (a ∩
b) |
13 | 11, 12 | tr 62 |
. . 3
(((a ∪ b) ∩ (c
∪ d)) ∪ ((a ∪ b) ∩
(a ∩ b))) = (a ∩
b) |
14 | 7, 8, 13 | 3tr 65 |
. 2
((a ∪ b) ∩ ((c
∪ d) ∪ (a ∩ b))) =
(a ∩ b) |
15 | 14 | lor 70 |
1
((c ∩ d) ∪ ((a
∪ b) ∩ ((c ∪ d) ∪
(a ∩ b)))) = ((c
∩ d) ∪ (a ∩ b)) |