Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > or0r | GIF version |
Description: Disjunction with 0. (Contributed by NM, 26-Nov-1997.) |
Ref | Expression |
---|---|
or0r | (0 ∪ a) = a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . 2 (0 ∪ a) = (a ∪ 0) | |
2 | or0 102 | . 2 (a ∪ 0) = a | |
3 | 1, 2 | ax-r2 36 | 1 (0 ∪ a) = a |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 0wf 9 |
This theorem was proved from axioms: ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-t 41 df-f 42 |
This theorem is referenced by: k1-4 359 ud3lem1a 566 ud3lem1d 569 ud5lem1b 587 bi1o1a 798 bi3 839 bi4 840 mlaconj4 844 mhlemlem1 874 mhlem1 877 marsdenlem2 881 mlaconjo 886 mhcor1 888 e2astlem1 895 oa6v4v 933 lem3.3.4 1053 lem3.3.7i3e1 1066 vneulem3 1133 vneulem7 1137 vneulem13 1143 vneulemexp 1148 |
Copyright terms: Public domain | W3C validator |