Proof of Theorem mldual
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . . . . 7
(b⊥ ∩ (a ∩ c)⊥ ) = (b ∪ (a ∩
c))⊥ |
2 | 1 | cm 61 |
. . . . . 6
(b ∪ (a ∩ c))⊥ = (b⊥ ∩ (a ∩ c)⊥ ) |
3 | | oran3 93 |
. . . . . . . 8
(a⊥ ∪ c⊥ ) = (a ∩ c)⊥ |
4 | 3 | lan 77 |
. . . . . . 7
(b⊥ ∩ (a⊥ ∪ c⊥ )) = (b⊥ ∩ (a ∩ c)⊥ ) |
5 | 4 | ax-r1 35 |
. . . . . 6
(b⊥ ∩ (a ∩ c)⊥ ) = (b⊥ ∩ (a⊥ ∪ c⊥ )) |
6 | 2, 5 | tr 62 |
. . . . 5
(b ∪ (a ∩ c))⊥ = (b⊥ ∩ (a⊥ ∪ c⊥ )) |
7 | 6 | lor 70 |
. . . 4
(a⊥ ∪ (b ∪ (a ∩
c))⊥ ) = (a⊥ ∪ (b⊥ ∩ (a⊥ ∪ c⊥ ))) |
8 | | ml 1123 |
. . . 4
(a⊥ ∪ (b⊥ ∩ (a⊥ ∪ c⊥ ))) = ((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) |
9 | | oran3 93 |
. . . . 5
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
10 | 9, 3 | 2an 79 |
. . . 4
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ c⊥ )) = ((a ∩ b)⊥ ∩ (a ∩ c)⊥ ) |
11 | 7, 8, 10 | 3tr 65 |
. . 3
(a⊥ ∪ (b ∪ (a ∩
c))⊥ ) = ((a ∩ b)⊥ ∩ (a ∩ c)⊥ ) |
12 | | oran3 93 |
. . 3
(a⊥ ∪ (b ∪ (a ∩
c))⊥ ) = (a ∩ (b ∪
(a ∩ c)))⊥ |
13 | | anor3 90 |
. . 3
((a ∩ b)⊥ ∩ (a ∩ c)⊥ ) = ((a ∩ b) ∪
(a ∩ c))⊥ |
14 | 11, 12, 13 | 3tr2 64 |
. 2
(a ∩ (b ∪ (a ∩
c)))⊥ = ((a ∩ b) ∪
(a ∩ c))⊥ |
15 | 14 | con1 66 |
1
(a ∩ (b ∪ (a ∩
c))) = ((a ∩ b) ∪
(a ∩ c)) |