| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > vneulem3 | GIF version | ||
| Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| vneulem3.1 | ((x ∪ y) ∩ (u ∪ w)) = 0 |
| Ref | Expression |
|---|---|
| vneulem3 | ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) = (u ∩ w) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vneulem3.1 | . . . 4 ((x ∪ y) ∩ (u ∪ w)) = 0 | |
| 2 | 1 | ror 71 | . . 3 (((x ∪ y) ∩ (u ∪ w)) ∪ u) = (0 ∪ u) |
| 3 | or0r 103 | . . 3 (0 ∪ u) = u | |
| 4 | 2, 3 | tr 62 | . 2 (((x ∪ y) ∩ (u ∪ w)) ∪ u) = u |
| 5 | 4 | ran 78 | 1 ((((x ∪ y) ∩ (u ∪ w)) ∪ u) ∩ w) = (u ∩ w) |
| Colors of variables: term |
| Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 0wf 9 |
| This theorem was proved from axioms: ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 |
| This theorem is referenced by: vneulem4 1134 |
| Copyright terms: Public domain | W3C validator |