QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  vneulem3 GIF version

Theorem vneulem3 1133
Description: Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
Hypothesis
Ref Expression
vneulem3.1 ((xy) ∩ (uw)) = 0
Assertion
Ref Expression
vneulem3 ((((xy) ∩ (uw)) ∪ u) ∩ w) = (uw)

Proof of Theorem vneulem3
StepHypRef Expression
1 vneulem3.1 . . . 4 ((xy) ∩ (uw)) = 0
21ror 71 . . 3 (((xy) ∩ (uw)) ∪ u) = (0 ∪ u)
3 or0r 103 . . 3 (0 ∪ u) = u
42, 3tr 62 . 2 (((xy) ∩ (uw)) ∪ u) = u
54ran 78 1 ((((xy) ∩ (uw)) ∪ u) ∩ w) = (uw)
Colors of variables: term
Syntax hints:   = wb 1  wo 6  wa 7  0wf 9
This theorem was proved from axioms:  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  vneulem4  1134
  Copyright terms: Public domain W3C validator