Proof of Theorem wdcom
Step | Hyp | Ref
| Expression |
1 | | df-cmtr 134 |
. 2
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
2 | | or42 85 |
. 2
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
3 | | dfb 94 |
. . . . 5
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
4 | | dfb 94 |
. . . . . 6
(a ≡ b⊥ ) = ((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥
)) |
5 | | ax-a1 30 |
. . . . . . . . 9
b = b⊥
⊥ |
6 | 5 | lan 77 |
. . . . . . . 8
(a⊥ ∩ b) = (a⊥ ∩ b⊥ ⊥
) |
7 | 6 | ax-r1 35 |
. . . . . . 7
(a⊥ ∩ b⊥ ⊥ ) = (a⊥ ∩ b) |
8 | 7 | lor 70 |
. . . . . 6
((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ ⊥ )) =
((a ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
9 | 4, 8 | ax-r2 36 |
. . . . 5
(a ≡ b⊥ ) = ((a ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
10 | 3, 9 | 2or 72 |
. . . 4
((a ≡ b) ∪ (a
≡ b⊥ )) =
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ b))) |
11 | 10 | ax-r1 35 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ b))) = ((a
≡ b) ∪ (a ≡ b⊥ )) |
12 | | ax-wdol 1104 |
. . 3
((a ≡ b) ∪ (a
≡ b⊥ )) =
1 |
13 | 11, 12 | ax-r2 36 |
. 2
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b⊥ ) ∪ (a⊥ ∩ b))) = 1 |
14 | 1, 2, 13 | 3tr 65 |
1
C (a, b) = 1 |