Proof of Theorem wdwom
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
2 | 1 | ax-r1 35 |
. 2
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
3 | | le1 146 |
. . 3
(a →2 b) ≤ 1 |
4 | | df-i5 48 |
. . . . . 6
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
5 | | df-i1 44 |
. . . . . . . . 9
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
6 | | wdwom.1 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ b)) =
1 |
7 | 5, 6 | ax-r2 36 |
. . . . . . . 8
(a →1 b) = 1 |
8 | 7 | wql1lem 287 |
. . . . . . 7
(a⊥ ∪ b) = 1 |
9 | | or4 84 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b)⊥ ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∪ b)⊥ ) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | | anor1 88 |
. . . . . . . . . . . . 13
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
11 | 10 | ax-r1 35 |
. . . . . . . . . . . 12
(a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
12 | 11 | lor 70 |
. . . . . . . . . . 11
((a ∩ b) ∪ (a⊥ ∪ b)⊥ ) = ((a ∩ b) ∪
(a ∩ b⊥ )) |
13 | 12 | ax-r5 38 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∪ b)⊥ ) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
14 | 9, 13 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b)⊥ ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
15 | | or12 80 |
. . . . . . . . 9
((a⊥ ∪ b)⊥ ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b)⊥ ∪ (a⊥ ∩ b⊥ ))) |
16 | | df-cmtr 134 |
. . . . . . . . 9
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
17 | 14, 15, 16 | 3tr1 63 |
. . . . . . . 8
((a⊥ ∪ b)⊥ ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = C (a, b) |
18 | | wdcom 1105 |
. . . . . . . 8
C (a, b) = 1 |
19 | 17, 18 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b)⊥ ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ ))) = 1 |
20 | 8, 19 | skr0 242 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) = 1 |
21 | 4, 20 | ax-r2 36 |
. . . . 5
(a →5 b) = 1 |
22 | 21 | ax-r1 35 |
. . . 4
1 = (a →5 b) |
23 | | i5lei2 348 |
. . . 4
(a →5 b) ≤ (a
→2 b) |
24 | 22, 23 | bltr 138 |
. . 3
1 ≤ (a →2
b) |
25 | 3, 24 | lebi 145 |
. 2
(a →2 b) = 1 |
26 | 2, 25 | ax-r2 36 |
1
(b ∪ (a⊥ ∩ b⊥ )) = 1 |