QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wddi1 GIF version

Theorem wddi1 1107
Description: Prove the weak distributive law in WDOL. This is our first WDOL theorem making use of ax-wom 361, which is justified by wdwom 1106. (Contributed by NM, 4-Mar-2006.)
Assertion
Ref Expression
wddi1 ((a ∩ (bc)) ≡ ((ab) ∪ (ac))) = 1

Proof of Theorem wddi1
StepHypRef Expression
1 wdcom 1105 . 2 C (a, b) = 1
2 wdcom 1105 . 2 C (a, c) = 1
31, 2wfh1 423 1 ((a ∩ (bc)) ≡ ((ab) ∪ (ac))) = 1
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wo 6  wa 7  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361  ax-wdol 1104
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by:  wddi2  1108  wddi-0  1117
  Copyright terms: Public domain W3C validator