QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wle1 GIF version

Theorem wle1 389
Description: Anything is less than or equal to 1. (Contributed by NM, 27-Sep-1997.)
Assertion
Ref Expression
wle1 (a2 1) = 1

Proof of Theorem wle1
StepHypRef Expression
1 or1 104 . . 3 (a ∪ 1) = 1
21bi1 118 . 2 ((a ∪ 1) ≡ 1) = 1
32wdf-le1 378 1 (a2 1) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  1wt 8  2 wle2 10
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator