Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlea | GIF version |
Description: L.e. absorption. (Contributed by NM, 27-Sep-1997.) |
Ref | Expression |
---|---|
wlea | ((a ∩ b) ≤2 a) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wa2 192 | . . 3 (((a ∩ b) ∪ a) ≡ (a ∪ (a ∩ b))) = 1 | |
2 | wa5b 200 | . . 3 ((a ∪ (a ∩ b)) ≡ a) = 1 | |
3 | 1, 2 | wr2 371 | . 2 (((a ∩ b) ∪ a) ≡ a) = 1 |
4 | 3 | wdf-le1 378 | 1 ((a ∩ b) ≤2 a) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 1wt 8 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: wledi 405 wcoman1 413 wcom3i 422 ska4 433 |
Copyright terms: Public domain | W3C validator |