QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wlea GIF version

Theorem wlea 388
Description: L.e. absorption. (Contributed by NM, 27-Sep-1997.)
Assertion
Ref Expression
wlea ((ab) ≤2 a) = 1

Proof of Theorem wlea
StepHypRef Expression
1 wa2 192 . . 3 (((ab) ∪ a) ≡ (a ∪ (ab))) = 1
2 wa5b 200 . . 3 ((a ∪ (ab)) ≡ a) = 1
31, 2wr2 371 . 2 (((ab) ∪ a) ≡ a) = 1
43wdf-le1 378 1 ((ab) ≤2 a) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  wa 7  1wt 8  2 wle2 10
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131
This theorem is referenced by:  wledi  405  wcoman1  413  wcom3i  422  ska4  433
  Copyright terms: Public domain W3C validator