Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wlem3.1 | GIF version |
Description: Weak analogue to lemma used in proof of Thm. 3.1 of Pavicic 1993. (Contributed by NM, 2-Sep-1997.) |
Ref | Expression |
---|---|
wlem3.1.1 | (a ∪ b) = b |
wlem3.1.2 | (b⊥ ∪ a) = 1 |
Ref | Expression |
---|---|
wlem3.1 | (a ≡ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfb 94 | . . 3 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
2 | wlem3.1.1 | . . . . . 6 (a ∪ b) = b | |
3 | 2 | leoa 123 | . . . . 5 (a ∩ b) = a |
4 | oran 87 | . . . . . . . 8 (a ∪ b) = (a⊥ ∩ b⊥ )⊥ | |
5 | 4 | ax-r1 35 | . . . . . . 7 (a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
6 | 5, 2 | ax-r2 36 | . . . . . 6 (a⊥ ∩ b⊥ )⊥ = b |
7 | 6 | con3 68 | . . . . 5 (a⊥ ∩ b⊥ ) = b⊥ |
8 | 3, 7 | 2or 72 | . . . 4 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a ∪ b⊥ ) |
9 | ax-a2 31 | . . . 4 (a ∪ b⊥ ) = (b⊥ ∪ a) | |
10 | 8, 9 | ax-r2 36 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (b⊥ ∪ a) |
11 | 1, 10 | ax-r2 36 | . 2 (a ≡ b) = (b⊥ ∪ a) |
12 | wlem3.1.2 | . 2 (b⊥ ∪ a) = 1 | |
13 | 11, 12 | ax-r2 36 | 1 (a ≡ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 |
This theorem is referenced by: woml 211 lem3.1 443 |
Copyright terms: Public domain | W3C validator |