QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcon3 GIF version

Theorem wcon3 209
Description: Weak contraposition. (Contributed by NM, 24-Sep-1997.)
Hypothesis
Ref Expression
wcon3.1 (ab) = 1
Assertion
Ref Expression
wcon3 (ab ) = 1

Proof of Theorem wcon3
StepHypRef Expression
1 ax-a1 30 . . . . 5 b = b
21ax-r1 35 . . . 4 b = b
32lbi 97 . . 3 (ab ) = (ab)
4 wcon3.1 . . 3 (ab) = 1
53, 4ax-r2 36 . 2 (ab ) = 1
65wcon1 207 1 (ab ) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40
This theorem is referenced by:  wlecon  395  wcomd  418  wfh1  423
  Copyright terms: Public domain W3C validator