Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > womle | GIF version |
Description: An equality implying the WOM law. (Contributed by NM, 24-Jan-1999.) |
Ref | Expression |
---|---|
womle.1 | (a ∩ (a →1 b)) = (a ∩ (a →2 b)) |
Ref | Expression |
---|---|
womle | ((a →2 b)⊥ ∪ (a →1 b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | womle.1 | . . . . 5 (a ∩ (a →1 b)) = (a ∩ (a →2 b)) | |
2 | 1 | ax-r1 35 | . . . 4 (a ∩ (a →2 b)) = (a ∩ (a →1 b)) |
3 | lear 161 | . . . 4 (a ∩ (a →1 b)) ≤ (a →1 b) | |
4 | 2, 3 | bltr 138 | . . 3 (a ∩ (a →2 b)) ≤ (a →1 b) |
5 | leor 159 | . . 3 (a →1 b) ≤ ((a →2 b)⊥ ∪ (a →1 b)) | |
6 | 4, 5 | letr 137 | . 2 (a ∩ (a →2 b)) ≤ ((a →2 b)⊥ ∪ (a →1 b)) |
7 | 6 | womle2a 295 | 1 ((a →2 b)⊥ ∪ (a →1 b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |