![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ndexg | Unicode version |
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
Ref | Expression |
---|---|
2ndexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2619 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fo2nd 5837 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | fofn 5160 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 7 |
. . 3
![]() ![]() ![]() ![]() |
5 | funfvex 5244 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | funfni 5051 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | mpan 415 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-sbc 2826 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-br 3807 df-opab 3861 df-mpt 3862 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-fo 4959 df-fv 4961 df-2nd 5820 |
This theorem is referenced by: elxp7 5849 xpopth 5854 eqop 5855 op1steq 5857 2nd1st 5858 2ndrn 5861 dfoprab3 5869 elopabi 5873 mpt2fvex 5881 dfmpt2 5896 cnvf1olem 5897 cnvoprab 5907 f1od2 5908 cnref1o 8850 qredeu 10670 qdenval 10755 |
Copyright terms: Public domain | W3C validator |