ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apti Unicode version

Theorem apti 7789
Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
apti  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)

Proof of Theorem apti
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7177 . . 3  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
21adantr 270 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
3 cnre 7177 . . . . . . 7  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
43adantl 271 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) ) )
54ad2antrr 472 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
6 simpr 108 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  e.  RR  /\  y  e.  RR ) )
76ad3antrrr 476 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
x  e.  RR  /\  y  e.  RR )
)
8 simplr 497 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
z  e.  RR  /\  w  e.  RR )
)
9 cru 7769 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
107, 8, 9syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) )  <->  ( x  =  z  /\  y  =  w ) ) )
11 simpllr 501 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
12 simpr 108 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
1311, 12eqeq12d 2096 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A  =  B  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) ) )
14 apreim 7770 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
1514notbid 625 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( -.  ( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) )  <->  -.  ( x #  z  \/  y #  w ) ) )
16 ioran 702 . . . . . . . . . . 11  |-  ( -.  ( x #  z  \/  y #  w )  <->  ( -.  x #  z  /\  -.  y #  w ) )
1715, 16syl6bb 194 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( -.  ( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) )  <-> 
( -.  x #  z  /\  -.  y #  w ) ) )
187, 8, 17syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( -.  ( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( -.  x #  z  /\  -.  y #  w ) ) )
1911, 12breq12d 3806 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
2019notbid 625 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( -.  A #  B  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) ) ) )
217simpld 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  x  e.  RR )
228simpld 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  z  e.  RR )
23 reapti 7746 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x  =  z  <->  -.  x #  z ) )
24 apreap 7754 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x #  z  <->  x #  z )
)
2524notbid 625 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( -.  x #  z  <->  -.  x #  z ) )
2623, 25bitr4d 189 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x  =  z  <->  -.  x #  z )
)
2721, 22, 26syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
x  =  z  <->  -.  x #  z ) )
287simprd 112 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  y  e.  RR )
298simprd 112 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  w  e.  RR )
30 reapti 7746 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y  =  w  <->  -.  y #  w ) )
31 apreap 7754 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y #  w  <->  y #  w )
)
3231notbid 625 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( -.  y #  w  <->  -.  y #  w ) )
3330, 32bitr4d 189 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y  =  w  <->  -.  y #  w )
)
3428, 29, 33syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
y  =  w  <->  -.  y #  w ) )
3527, 34anbi12d 457 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
( x  =  z  /\  y  =  w )  <->  ( -.  x #  z  /\  -.  y #  w ) ) )
3618, 20, 353bitr4d 218 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( -.  A #  B  <->  ( x  =  z  /\  y  =  w ) ) )
3710, 13, 363bitr4d 218 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A  =  B  <->  -.  A #  B ) )
3837ex 113 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  ( B  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  B  <->  -.  A #  B ) ) )
3938rexlimdvva 2485 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  B  <->  -.  A #  B ) ) )
405, 39mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A  =  B  <->  -.  A #  B ) )
4140ex 113 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( A  =  ( x  +  ( _i  x.  y ) )  ->  ( A  =  B  <->  -.  A #  B
) ) )
4241rexlimdvva 2485 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  ->  ( A  =  B  <->  -.  A #  B
) ) )
432, 42mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285    e. wcel 1434   E.wrex 2350   class class class wbr 3793  (class class class)co 5543   CCcc 7041   RRcr 7042   _ici 7045    + caddc 7046    x. cmul 7048   # creap 7741   # cap 7748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-ltxr 7220  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749
This theorem is referenced by:  apne  7790  qapne  8805  expeq0  9604  nn0opthd  9746  recvguniq  10019  abs00  10088  climuni  10270
  Copyright terms: Public domain W3C validator