ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cru Unicode version

Theorem cru 8364
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cru  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) )  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem cru
StepHypRef Expression
1 simplrl 524 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  C  e.  RR )
21recnd 7794 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  C  e.  CC )
3 simplll 522 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  A  e.  RR )
43recnd 7794 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  A  e.  CC )
5 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) ) )
6 ax-icn 7715 . . . . . . . . . . 11  |-  _i  e.  CC
76a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  _i  e.  CC )
8 simpllr 523 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  B  e.  RR )
98recnd 7794 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  B  e.  CC )
107, 9mulcld 7786 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  B )  e.  CC )
11 simplrr 525 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  D  e.  RR )
1211recnd 7794 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  D  e.  CC )
137, 12mulcld 7786 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  D )  e.  CC )
144, 10, 2, 13addsubeq4d 8124 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( ( A  +  ( _i  x.  B ) )  =  ( C  +  ( _i  x.  D ) )  <->  ( C  -  A )  =  ( ( _i  x.  B
)  -  ( _i  x.  D ) ) ) )
155, 14mpbid 146 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( C  -  A )  =  ( ( _i  x.  B
)  -  ( _i  x.  D ) ) )
168, 11resubcld 8143 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( B  -  D )  e.  RR )
177, 9, 12subdid 8176 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  ( B  -  D
) )  =  ( ( _i  x.  B
)  -  ( _i  x.  D ) ) )
1817, 15eqtr4d 2175 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  ( B  -  D
) )  =  ( C  -  A ) )
191, 3resubcld 8143 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( C  -  A )  e.  RR )
2018, 19eqeltrd 2216 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  ( B  -  D
) )  e.  RR )
21 rimul 8347 . . . . . . . . . . 11  |-  ( ( ( B  -  D
)  e.  RR  /\  ( _i  x.  ( B  -  D )
)  e.  RR )  ->  ( B  -  D )  =  0 )
2216, 20, 21syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( B  -  D )  =  0 )
239, 12, 22subeq0d 8081 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  B  =  D )
2423oveq2d 5790 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  B )  =  ( _i  x.  D ) )
2524oveq1d 5789 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( ( _i  x.  B )  -  ( _i  x.  D
) )  =  ( ( _i  x.  D
)  -  ( _i  x.  D ) ) )
2613subidd 8061 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( ( _i  x.  D )  -  ( _i  x.  D
) )  =  0 )
2715, 25, 263eqtrd 2176 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( C  -  A )  =  0 )
282, 4, 27subeq0d 8081 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  C  =  A )
2928eqcomd 2145 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  A  =  C )
3029, 23jca 304 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( A  =  C  /\  B  =  D ) )
3130ex 114 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) )  ->  ( A  =  C  /\  B  =  D ) ) )
32 oveq2 5782 . . 3  |-  ( B  =  D  ->  (
_i  x.  B )  =  ( _i  x.  D ) )
33 oveq12 5783 . . 3  |-  ( ( A  =  C  /\  ( _i  x.  B
)  =  ( _i  x.  D ) )  ->  ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) ) )
3432, 33sylan2 284 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  ( _i  x.  B ) )  =  ( C  +  ( _i  x.  D ) ) )
3531, 34impbid1 141 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) )  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   _ici 7622    + caddc 7623    x. cmul 7625    - cmin 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337
This theorem is referenced by:  apreim  8365  apti  8384  creur  8717  creui  8718  cnref1o  9440  efieq  11442
  Copyright terms: Public domain W3C validator