ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj Unicode version

Theorem caseinj 6974
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r  |-  ( ph  ->  Fun  `' R )
caseinj.s  |-  ( ph  ->  Fun  `' S )
caseinj.disj  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
Assertion
Ref Expression
caseinj  |-  ( ph  ->  Fun  `'case ( R ,  S
) )

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 6932 . . . . . . 7  |- inl  =  ( y  e.  _V  |->  <. (/)
,  y >. )
21funmpt2 5162 . . . . . 6  |-  Fun inl
3 funcnvcnv 5182 . . . . . 6  |-  ( Fun inl  ->  Fun  `' `'inl )
42, 3ax-mp 5 . . . . 5  |-  Fun  `' `'inl
5 caseinj.r . . . . 5  |-  ( ph  ->  Fun  `' R )
6 funco 5163 . . . . 5  |-  ( ( Fun  `' `'inl  /\  Fun  `' R )  ->  Fun  ( `' `'inl  o.  `' R ) )
74, 5, 6sylancr 410 . . . 4  |-  ( ph  ->  Fun  ( `' `'inl  o.  `' R ) )
8 cnvco 4724 . . . . 5  |-  `' ( R  o.  `'inl )  =  ( `' `'inl  o.  `' R )
98funeqi 5144 . . . 4  |-  ( Fun  `' ( R  o.  `'inl )  <->  Fun  ( `' `'inl  o.  `' R ) )
107, 9sylibr 133 . . 3  |-  ( ph  ->  Fun  `' ( R  o.  `'inl ) )
11 df-inr 6933 . . . . . . 7  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
1211funmpt2 5162 . . . . . 6  |-  Fun inr
13 funcnvcnv 5182 . . . . . 6  |-  ( Fun inr  ->  Fun  `' `'inr )
1412, 13ax-mp 5 . . . . 5  |-  Fun  `' `'inr
15 caseinj.s . . . . 5  |-  ( ph  ->  Fun  `' S )
16 funco 5163 . . . . 5  |-  ( ( Fun  `' `'inr  /\  Fun  `' S )  ->  Fun  ( `' `'inr  o.  `' S ) )
1714, 15, 16sylancr 410 . . . 4  |-  ( ph  ->  Fun  ( `' `'inr  o.  `' S ) )
18 cnvco 4724 . . . . 5  |-  `' ( S  o.  `'inr )  =  ( `' `'inr  o.  `' S )
1918funeqi 5144 . . . 4  |-  ( Fun  `' ( S  o.  `'inr )  <->  Fun  ( `' `'inr  o.  `' S ) )
2017, 19sylibr 133 . . 3  |-  ( ph  ->  Fun  `' ( S  o.  `'inr ) )
21 df-rn 4550 . . . . . . 7  |-  ran  ( R  o.  `'inl )  =  dom  `' ( R  o.  `'inl )
22 rncoss 4809 . . . . . . 7  |-  ran  ( R  o.  `'inl )  C_ 
ran  R
2321, 22eqsstrri 3130 . . . . . 6  |-  dom  `' ( R  o.  `'inl )  C_  ran  R
24 df-rn 4550 . . . . . . 7  |-  ran  ( S  o.  `'inr )  =  dom  `' ( S  o.  `'inr )
25 rncoss 4809 . . . . . . 7  |-  ran  ( S  o.  `'inr )  C_ 
ran  S
2624, 25eqsstrri 3130 . . . . . 6  |-  dom  `' ( S  o.  `'inr )  C_  ran  S
27 ss2in 3304 . . . . . 6  |-  ( ( dom  `' ( R  o.  `'inl )  C_  ran  R  /\  dom  `' ( S  o.  `'inr )  C_  ran  S )  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr )
)  C_  ( ran  R  i^i  ran  S )
)
2823, 26, 27mp2an 422 . . . . 5  |-  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) )  C_  ( ran  R  i^i  ran  S
)
29 caseinj.disj . . . . 5  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
3028, 29sseqtrid 3147 . . . 4  |-  ( ph  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) ) 
C_  (/) )
31 ss0 3403 . . . 4  |-  ( ( dom  `' ( R  o.  `'inl )  i^i 
dom  `' ( S  o.  `'inr ) )  C_  (/)  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) )  =  (/) )
3230, 31syl 14 . . 3  |-  ( ph  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) )  =  (/) )
33 funun 5167 . . 3  |-  ( ( ( Fun  `' ( R  o.  `'inl )  /\  Fun  `' ( S  o.  `'inr ) )  /\  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr )
)  =  (/) )  ->  Fun  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) ) )
3410, 20, 32, 33syl21anc 1215 . 2  |-  ( ph  ->  Fun  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) ) )
35 df-case 6969 . . . . 5  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
3635cnveqi 4714 . . . 4  |-  `'case ( R ,  S )  =  `' ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
37 cnvun 4944 . . . 4  |-  `' ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  =  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) )
3836, 37eqtri 2160 . . 3  |-  `'case ( R ,  S )  =  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) )
3938funeqi 5144 . 2  |-  ( Fun  `'case ( R ,  S
)  <->  Fun  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) ) )
4034, 39sylibr 133 1  |-  ( ph  ->  Fun  `'case ( R ,  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   _Vcvv 2686    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   <.cop 3530   `'ccnv 4538   dom cdm 4539   ran crn 4540    o. ccom 4543   Fun wfun 5117   1oc1o 6306  inlcinl 6930  inrcinr 6931  casecdjucase 6968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  casef1  6975
  Copyright terms: Public domain W3C validator