ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj GIF version

Theorem caseinj 6974
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r (𝜑 → Fun 𝑅)
caseinj.s (𝜑 → Fun 𝑆)
caseinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
caseinj (𝜑 → Fun case(𝑅, 𝑆))

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 6932 . . . . . . 7 inl = (𝑦 ∈ V ↦ ⟨∅, 𝑦⟩)
21funmpt2 5162 . . . . . 6 Fun inl
3 funcnvcnv 5182 . . . . . 6 (Fun inl → Fun inl)
42, 3ax-mp 5 . . . . 5 Fun inl
5 caseinj.r . . . . 5 (𝜑 → Fun 𝑅)
6 funco 5163 . . . . 5 ((Fun inl ∧ Fun 𝑅) → Fun (inl ∘ 𝑅))
74, 5, 6sylancr 410 . . . 4 (𝜑 → Fun (inl ∘ 𝑅))
8 cnvco 4724 . . . . 5 (𝑅inl) = (inl ∘ 𝑅)
98funeqi 5144 . . . 4 (Fun (𝑅inl) ↔ Fun (inl ∘ 𝑅))
107, 9sylibr 133 . . 3 (𝜑 → Fun (𝑅inl))
11 df-inr 6933 . . . . . . 7 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
1211funmpt2 5162 . . . . . 6 Fun inr
13 funcnvcnv 5182 . . . . . 6 (Fun inr → Fun inr)
1412, 13ax-mp 5 . . . . 5 Fun inr
15 caseinj.s . . . . 5 (𝜑 → Fun 𝑆)
16 funco 5163 . . . . 5 ((Fun inr ∧ Fun 𝑆) → Fun (inr ∘ 𝑆))
1714, 15, 16sylancr 410 . . . 4 (𝜑 → Fun (inr ∘ 𝑆))
18 cnvco 4724 . . . . 5 (𝑆inr) = (inr ∘ 𝑆)
1918funeqi 5144 . . . 4 (Fun (𝑆inr) ↔ Fun (inr ∘ 𝑆))
2017, 19sylibr 133 . . 3 (𝜑 → Fun (𝑆inr))
21 df-rn 4550 . . . . . . 7 ran (𝑅inl) = dom (𝑅inl)
22 rncoss 4809 . . . . . . 7 ran (𝑅inl) ⊆ ran 𝑅
2321, 22eqsstrri 3130 . . . . . 6 dom (𝑅inl) ⊆ ran 𝑅
24 df-rn 4550 . . . . . . 7 ran (𝑆inr) = dom (𝑆inr)
25 rncoss 4809 . . . . . . 7 ran (𝑆inr) ⊆ ran 𝑆
2624, 25eqsstrri 3130 . . . . . 6 dom (𝑆inr) ⊆ ran 𝑆
27 ss2in 3304 . . . . . 6 ((dom (𝑅inl) ⊆ ran 𝑅 ∧ dom (𝑆inr) ⊆ ran 𝑆) → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆))
2823, 26, 27mp2an 422 . . . . 5 (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆)
29 caseinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3028, 29sseqtrid 3147 . . . 4 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅)
31 ss0 3403 . . . 4 ((dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅ → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
3230, 31syl 14 . . 3 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
33 funun 5167 . . 3 (((Fun (𝑅inl) ∧ Fun (𝑆inr)) ∧ (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅) → Fun ((𝑅inl) ∪ (𝑆inr)))
3410, 20, 32, 33syl21anc 1215 . 2 (𝜑 → Fun ((𝑅inl) ∪ (𝑆inr)))
35 df-case 6969 . . . . 5 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3635cnveqi 4714 . . . 4 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
37 cnvun 4944 . . . 4 ((𝑅inl) ∪ (𝑆inr)) = ((𝑅inl) ∪ (𝑆inr))
3836, 37eqtri 2160 . . 3 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3938funeqi 5144 . 2 (Fun case(𝑅, 𝑆) ↔ Fun ((𝑅inl) ∪ (𝑆inr)))
4034, 39sylibr 133 1 (𝜑 → Fun case(𝑅, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  Vcvv 2686  cun 3069  cin 3070  wss 3071  c0 3363  cop 3530  ccnv 4538  dom cdm 4539  ran crn 4540  ccom 4543  Fun wfun 5117  1oc1o 6306  inlcinl 6930  inrcinr 6931  casecdjucase 6968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  casef1  6975
  Copyright terms: Public domain W3C validator