![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
funeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | funeq 4971 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-in 2988 df-ss 2995 df-br 3806 df-opab 3860 df-rel 4398 df-cnv 4399 df-co 4400 df-fun 4954 |
This theorem is referenced by: funmpt 4988 funmpt2 4989 funprg 5000 funtpg 5001 funtp 5003 funcnvuni 5019 f1cnvcnv 5152 f1co 5153 fun11iun 5199 f10 5212 funoprabg 5652 mpt2fun 5655 ovidig 5670 tposfun 5930 tfri1dALT 6021 tfrcl 6034 rdgfun 6043 frecfun 6065 frecfcllem 6074 th3qcor 6298 ssdomg 6347 |
Copyright terms: Public domain | W3C validator |