ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1t Unicode version

Theorem cnmpt1t 12454
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1t  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Distinct variable groups:    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt1t
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponuni 12182 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3 mpteq1 4012 . . . 4  |-  ( X  =  U. J  -> 
( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
6 cnmpt11.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
7 cntop2 12371 . . . . . . . . . 10  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
9 toptopon2 12186 . . . . . . . . 9  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
108, 9sylib 121 . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
11 cnf2 12374 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  A ) : X --> U. K
)
121, 10, 6, 11syl3anc 1216 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> U. K )
1312fvmptelrn 5573 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  U. K )
14 eqid 2139 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1514fvmpt2 5504 . . . . . 6  |-  ( ( x  e.  X  /\  A  e.  U. K )  ->  ( ( x  e.  X  |->  A ) `
 x )  =  A )
165, 13, 15syl2anc 408 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
17 cnmpt1t.b . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
18 cntop2 12371 . . . . . . . . . 10  |-  ( ( x  e.  X  |->  B )  e.  ( J  Cn  L )  ->  L  e.  Top )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  L  e.  Top )
20 toptopon2 12186 . . . . . . . . 9  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2119, 20sylib 121 . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
22 cnf2 12374 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  X  |->  B ) : X --> U. L
)
231, 21, 17, 22syl3anc 1216 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> U. L )
2423fvmptelrn 5573 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  U. L )
25 eqid 2139 . . . . . . 7  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
2625fvmpt2 5504 . . . . . 6  |-  ( ( x  e.  X  /\  B  e.  U. L )  ->  ( ( x  e.  X  |->  B ) `
 x )  =  B )
275, 24, 26syl2anc 408 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  B ) `  x
)  =  B )
2816, 27opeq12d 3713 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. A ,  B >. )
2928mpteq2dva 4018 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
304, 29eqtr3d 2174 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
31 eqid 2139 . . . 4  |-  U. J  =  U. J
32 nfcv 2281 . . . . 5  |-  F/_ y <. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >.
33 nffvmpt1 5432 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  A ) `  y )
34 nffvmpt1 5432 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  B ) `  y )
3533, 34nfop 3721 . . . . 5  |-  F/_ x <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >.
36 fveq2 5421 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  A ) `  x
)  =  ( ( x  e.  X  |->  A ) `  y ) )
37 fveq2 5421 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  B ) `  x
)  =  ( ( x  e.  X  |->  B ) `  y ) )
3836, 37opeq12d 3713 . . . . 5  |-  ( x  =  y  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `
 y ) >.
)
3932, 35, 38cbvmpt 4023 . . . 4  |-  ( x  e.  U. J  |->  <.
( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( y  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >. )
4031, 39txcnmpt 12442 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  e.  ( J  Cn  ( K 
tX  L ) ) )
416, 17, 40syl2anc 408 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  e.  ( J  Cn  ( K  tX  L ) ) )
4230, 41eqeltrrd 2217 1  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   <.cop 3530   U.cuni 3736    |-> cmpt 3989   -->wf 5119   ` cfv 5123  (class class class)co 5774   Topctop 12164  TopOnctopon 12177    Cn ccn 12354    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-tx 12422
This theorem is referenced by:  cnmpt12f  12455  imasnopn  12468  cnrehmeocntop  12762
  Copyright terms: Public domain W3C validator