Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqd Unicode version

Theorem cnveqd 4533
 Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
Hypothesis
Ref Expression
cnveqd.1
Assertion
Ref Expression
cnveqd

Proof of Theorem cnveqd
StepHypRef Expression
1 cnveqd.1 . 2
2 cnveq 4531 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285  ccnv 4364 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-in 2980  df-ss 2987  df-br 3788  df-opab 3842  df-cnv 4373 This theorem is referenced by:  cnvsng  4830  cores2  4857  suppssof1  5753  2ndval2  5808  2nd1st  5831  cnvf1olem  5870  brtpos2  5894  dftpos4  5906  tpostpos  5907  tposf12  5912  xpcomco  6360  infeq123d  6478
 Copyright terms: Public domain W3C validator