ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpostpos Unicode version

Theorem tpostpos 5910
Description: Value of the double transposition for a general class 
F. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)

Proof of Theorem tpostpos
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 5896 . 2  |-  Rel tpos tpos  F
2 inss2 3186 . . 3  |-  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V )
3 relxp 4475 . . 3  |-  Rel  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
4 relss 4455 . . 3  |-  ( ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X.  _V ) ) 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  ->  ( Rel  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V )  ->  Rel  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) ) ) )
52, 3, 4mp2 16 . 2  |-  Rel  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )
6 relcnv 4731 . . . . . . . . 9  |-  Rel  `' dom tpos  F
7 df-rel 4380 . . . . . . . . 9  |-  ( Rel  `' dom tpos  F  <->  `' dom tpos  F  C_  ( _V 
X.  _V ) )
86, 7mpbi 137 . . . . . . . 8  |-  `' dom tpos  F 
C_  ( _V  X.  _V )
9 simpl 106 . . . . . . . 8  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  ->  w  e.  `' dom tpos  F )
108, 9sseldi 2971 . . . . . . 7  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  ->  w  e.  ( _V  X.  _V )
)
11 simpr 107 . . . . . . 7  |-  ( ( w F z  /\  w  e.  ( _V  X.  _V ) )  ->  w  e.  ( _V  X.  _V ) )
12 elvv 4430 . . . . . . . . 9  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
13 eleq1 2116 . . . . . . . . . . . . . 14  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  `' dom tpos  F  <->  <. x ,  y
>.  e.  `' dom tpos  F ) )
14 vex 2577 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
15 vex 2577 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1614, 15opelcnv 4545 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  e.  `' dom tpos  F  <->  <. y ,  x >.  e.  dom tpos  F )
1713, 16syl6bb 189 . . . . . . . . . . . . 13  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  `' dom tpos  F  <->  <. y ,  x >.  e.  dom tpos  F )
)
18 sneq 3414 . . . . . . . . . . . . . . . . 17  |-  ( w  =  <. x ,  y
>.  ->  { w }  =  { <. x ,  y
>. } )
1918cnveqd 4539 . . . . . . . . . . . . . . . 16  |-  ( w  =  <. x ,  y
>.  ->  `' { w }  =  `' { <. x ,  y >. } )
2019unieqd 3619 . . . . . . . . . . . . . . 15  |-  ( w  =  <. x ,  y
>.  ->  U. `' { w }  =  U. `' { <. x ,  y >. } )
21 opswapg 4835 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  U. `' { <. x ,  y >. }  =  <. y ,  x >. )
2214, 15, 21mp2an 410 . . . . . . . . . . . . . . 15  |-  U. `' { <. x ,  y
>. }  =  <. y ,  x >.
2320, 22syl6eq 2104 . . . . . . . . . . . . . 14  |-  ( w  =  <. x ,  y
>.  ->  U. `' { w }  =  <. y ,  x >. )
2423breq1d 3802 . . . . . . . . . . . . 13  |-  ( w  =  <. x ,  y
>.  ->  ( U. `' { w }tpos  F
z  <->  <. y ,  x >.tpos  F z ) )
2517, 24anbi12d 450 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  ( <. y ,  x >.  e.  dom tpos  F  /\  <. y ,  x >.tpos  F z ) ) )
2615, 14opex 3994 . . . . . . . . . . . . . . 15  |-  <. y ,  x >.  e.  _V
27 vex 2577 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
2826, 27breldm 4567 . . . . . . . . . . . . . 14  |-  ( <.
y ,  x >.tpos  F z  ->  <. y ,  x >.  e.  dom tpos  F )
2928pm4.71ri 378 . . . . . . . . . . . . 13  |-  ( <.
y ,  x >.tpos  F z  <->  ( <. y ,  x >.  e.  dom tpos  F  /\  <. y ,  x >.tpos  F z ) )
30 brtposg 5900 . . . . . . . . . . . . . 14  |-  ( ( y  e.  _V  /\  x  e.  _V  /\  z  e.  _V )  ->  ( <. y ,  x >.tpos  F z  <->  <. x ,  y
>. F z ) )
3115, 14, 27, 30mp3an 1243 . . . . . . . . . . . . 13  |-  ( <.
y ,  x >.tpos  F z  <->  <. x ,  y
>. F z )
3229, 31bitr3i 179 . . . . . . . . . . . 12  |-  ( (
<. y ,  x >.  e. 
dom tpos  F  /\  <. y ,  x >.tpos  F z )  <->  <. x ,  y >. F z )
3325, 32syl6bb 189 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  <. x ,  y >. F z ) )
34 breq1 3795 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( w F z  <->  <. x ,  y
>. F z ) )
3533, 34bitr4d 184 . . . . . . . . . 10  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  w F
z ) )
3635exlimivv 1792 . . . . . . . . 9  |-  ( E. x E. y  w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  w F
z ) )
3712, 36sylbi 118 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  w F z ) )
38 iba 288 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  ->  ( w F z  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) ) )
3937, 38bitrd 181 . . . . . . 7  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) ) )
4010, 11, 39pm5.21nii 630 . . . . . 6  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) )
41 elsni 3421 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { (/) }  ->  w  =  (/) )
4241sneqd 3416 . . . . . . . . . . . . . . 15  |-  ( w  e.  { (/) }  ->  { w }  =  { (/)
} )
4342cnveqd 4539 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) }  ->  `' { w }  =  `' { (/) } )
44 cnvsn0 4817 . . . . . . . . . . . . . 14  |-  `' { (/)
}  =  (/)
4543, 44syl6eq 2104 . . . . . . . . . . . . 13  |-  ( w  e.  { (/) }  ->  `' { w }  =  (/) )
4645unieqd 3619 . . . . . . . . . . . 12  |-  ( w  e.  { (/) }  ->  U. `' { w }  =  U. (/) )
47 uni0 3635 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
4846, 47syl6eq 2104 . . . . . . . . . . 11  |-  ( w  e.  { (/) }  ->  U. `' { w }  =  (/) )
4948breq1d 3802 . . . . . . . . . 10  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  (/)tpos  F z ) )
50 brtpos0 5898 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( (/)tpos  F z  <->  (/) F z ) )
5127, 50ax-mp 7 . . . . . . . . . 10  |-  ( (/)tpos  F z  <->  (/) F z )
5249, 51syl6bb 189 . . . . . . . . 9  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  (/) F z ) )
5341breq1d 3802 . . . . . . . . 9  |-  ( w  e.  { (/) }  ->  ( w F z  <->  (/) F z ) )
5452, 53bitr4d 184 . . . . . . . 8  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  w F
z ) )
5554pm5.32i 435 . . . . . . 7  |-  ( ( w  e.  { (/) }  /\  U. `' {
w }tpos  F z
)  <->  ( w  e. 
{ (/) }  /\  w F z ) )
56 ancom 257 . . . . . . 7  |-  ( ( w  e.  { (/) }  /\  w F z )  <->  ( w F z  /\  w  e. 
{ (/) } ) )
5755, 56bitri 177 . . . . . 6  |-  ( ( w  e.  { (/) }  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e. 
{ (/) } ) )
5840, 57orbi12i 691 . . . . 5  |-  ( ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  \/  (
w  e.  { (/) }  /\  U. `' {
w }tpos  F z
) )  <->  ( (
w F z  /\  w  e.  ( _V  X.  _V ) )  \/  ( w F z  /\  w  e.  { (/)
} ) ) )
59 andir 743 . . . . 5  |-  ( ( ( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( (
w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  \/  ( w  e.  { (/) }  /\  U. `' { w }tpos  F
z ) ) )
60 andi 742 . . . . 5  |-  ( ( w F z  /\  ( w  e.  ( _V  X.  _V )  \/  w  e.  { (/) } ) )  <->  ( (
w F z  /\  w  e.  ( _V  X.  _V ) )  \/  ( w F z  /\  w  e.  { (/)
} ) ) )
6158, 59, 603bitr4i 205 . . . 4  |-  ( ( ( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( w F z  /\  (
w  e.  ( _V 
X.  _V )  \/  w  e.  { (/) } ) ) )
62 elun 3112 . . . . 5  |-  ( w  e.  ( `' dom tpos  F  u.  { (/) } )  <-> 
( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } ) )
6362anbi1i 439 . . . 4  |-  ( ( w  e.  ( `' dom tpos  F  u.  { (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( (
w  e.  `' dom tpos  F  \/  w  e.  { (/)
} )  /\  U. `' { w }tpos  F
z ) )
64 brxp 4403 . . . . . . 7  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  ( w  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  e. 
_V ) )
6527, 64mpbiran2 859 . . . . . 6  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  w  e.  ( ( _V  X.  _V )  u.  { (/) } ) )
66 elun 3112 . . . . . 6  |-  ( w  e.  ( ( _V 
X.  _V )  u.  { (/)
} )  <->  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) )
6765, 66bitri 177 . . . . 5  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) )
6867anbi2i 438 . . . 4  |-  ( ( w F z  /\  w ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) z )  <-> 
( w F z  /\  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) ) )
6961, 63, 683bitr4i 205 . . 3  |-  ( ( w  e.  ( `' dom tpos  F  u.  { (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( w F z  /\  w
( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z ) )
70 brtpos2 5897 . . . 4  |-  ( z  e.  _V  ->  (
wtpos tpos  F z  <->  ( w  e.  ( `' dom tpos  F  u.  {
(/) } )  /\  U. `' { w }tpos  F
z ) ) )
7127, 70ax-mp 7 . . 3  |-  ( wtpos tpos  F z  <->  ( w  e.  ( `' dom tpos  F  u.  {
(/) } )  /\  U. `' { w }tpos  F
z ) )
72 brin 3839 . . 3  |-  ( w ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
) z  <->  ( w F z  /\  w
( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z ) )
7369, 71, 723bitr4i 205 . 2  |-  ( wtpos tpos  F z  <->  w ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) ) z )
741, 5, 73eqbrriv 4463 1  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102    \/ wo 639    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574    u. cun 2943    i^i cin 2944    C_ wss 2945   (/)c0 3252   {csn 3403   <.cop 3406   U.cuni 3608   class class class wbr 3792    X. cxp 4371   `'ccnv 4372   dom cdm 4373   Rel wrel 4378  tpos ctpos 5890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-tpos 5891
This theorem is referenced by:  tpostpos2  5911
  Copyright terms: Public domain W3C validator