ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvin Unicode version

Theorem cnvin 4946
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )

Proof of Theorem cnvin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4547 . . 3  |-  `' ( A  i^i  B )  =  { <. x ,  y >.  |  y ( A  i^i  B
) x }
2 inopab 4671 . . . 4  |-  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  ( y A x  /\  y B x ) }
3 brin 3980 . . . . 5  |-  ( y ( A  i^i  B
) x  <->  ( y A x  /\  y B x ) )
43opabbii 3995 . . . 4  |-  { <. x ,  y >.  |  y ( A  i^i  B
) x }  =  { <. x ,  y
>.  |  ( y A x  /\  y B x ) }
52, 4eqtr4i 2163 . . 3  |-  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  y ( A  i^i  B
) x }
61, 5eqtr4i 2163 . 2  |-  `' ( A  i^i  B )  =  ( { <. x ,  y >.  |  y A x }  i^i  {
<. x ,  y >.  |  y B x } )
7 df-cnv 4547 . . 3  |-  `' A  =  { <. x ,  y
>.  |  y A x }
8 df-cnv 4547 . . 3  |-  `' B  =  { <. x ,  y
>.  |  y B x }
97, 8ineq12i 3275 . 2  |-  ( `' A  i^i  `' B
)  =  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )
106, 9eqtr4i 2163 1  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331    i^i cin 3070   class class class wbr 3929   {copab 3988   `'ccnv 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547
This theorem is referenced by:  rnin  4948  dminxp  4983  imainrect  4984  cnvcnv  4991
  Copyright terms: Public domain W3C validator