ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainrect Unicode version

Theorem imainrect 4984
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 4551 . . 3  |-  ( ( G  i^i  ( A  X.  B ) )  |`  Y )  =  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
21rneqi 4767 . 2  |-  ran  (
( G  i^i  ( A  X.  B ) )  |`  Y )  =  ran  ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
3 df-ima 4552 . 2  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ran  ( ( G  i^i  ( A  X.  B ) )  |`  Y )
4 df-ima 4552 . . . . 5  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  |`  ( Y  i^i  A ) )
5 df-res 4551 . . . . . 6  |-  ( G  |`  ( Y  i^i  A
) )  =  ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )
65rneqi 4767 . . . . 5  |-  ran  ( G  |`  ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
74, 6eqtri 2160 . . . 4  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
87ineq1i 3273 . . 3  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i 
B )
9 cnvin 4946 . . . . . 6  |-  `' ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
10 inxp 4673 . . . . . . . . . 10  |-  ( ( A  X.  _V )  i^i  ( _V  X.  B
) )  =  ( ( A  i^i  _V )  X.  ( _V  i^i  B ) )
11 inv1 3399 . . . . . . . . . . 11  |-  ( A  i^i  _V )  =  A
12 incom 3268 . . . . . . . . . . . 12  |-  ( _V 
i^i  B )  =  ( B  i^i  _V )
13 inv1 3399 . . . . . . . . . . . 12  |-  ( B  i^i  _V )  =  B
1412, 13eqtri 2160 . . . . . . . . . . 11  |-  ( _V 
i^i  B )  =  B
1511, 14xpeq12i 4561 . . . . . . . . . 10  |-  ( ( A  i^i  _V )  X.  ( _V  i^i  B
) )  =  ( A  X.  B )
1610, 15eqtr2i 2161 . . . . . . . . 9  |-  ( A  X.  B )  =  ( ( A  X.  _V )  i^i  ( _V  X.  B ) )
1716ineq2i 3274 . . . . . . . 8  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
18 in32 3288 . . . . . . . 8  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )
19 xpindir 4675 . . . . . . . . . . . 12  |-  ( ( Y  i^i  A )  X.  _V )  =  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) )
2019ineq2i 3274 . . . . . . . . . . 11  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( G  i^i  (
( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
21 inass 3286 . . . . . . . . . . 11  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  =  ( G  i^i  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
2220, 21eqtr4i 2163 . . . . . . . . . 10  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( A  X.  _V ) )
2322ineq1i 3273 . . . . . . . . 9  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )
24 inass 3286 . . . . . . . . 9  |-  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  (
( A  X.  _V )  i^i  ( _V  X.  B ) ) )
2523, 24eqtri 2160 . . . . . . . 8  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
2617, 18, 253eqtr4i 2170 . . . . . . 7  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )
2726cnveqi 4714 . . . . . 6  |-  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  `' ( ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  ( _V  X.  B ) )
28 df-res 4551 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  ( B  X.  _V ) )
29 cnvxp 4957 . . . . . . . 8  |-  `' ( _V  X.  B )  =  ( B  X.  _V )
3029ineq2i 3274 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  `' ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( B  X.  _V ) )
3128, 30eqtr4i 2163 . . . . . 6  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
329, 27, 313eqtr4ri 2171 . . . . 5  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
3332dmeqi 4740 . . . 4  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  dom  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
34 incom 3268 . . . . 5  |-  ( B  i^i  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) ) )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
35 dmres 4840 . . . . 5  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  ( B  i^i  dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
) )
36 df-rn 4550 . . . . . 6  |-  ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )
3736ineq1i 3273 . . . . 5  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
3834, 35, 373eqtr4ri 2171 . . . 4  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  |`  B )
39 df-rn 4550 . . . 4  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  dom  `' ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
4033, 38, 393eqtr4ri 2171 . . 3  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  B )
418, 40eqtr4i 2163 . 2  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ran  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
422, 3, 413eqtr4i 2170 1  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1331   _Vcvv 2686    i^i cin 3070    X. cxp 4537   `'ccnv 4538   dom cdm 4539   ran crn 4540    |` cres 4541   "cima 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552
This theorem is referenced by:  ecinxp  6504
  Copyright terms: Public domain W3C validator