![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con3i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | con3i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 591 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 577 ax-in2 578 |
This theorem is referenced by: pm2.51 614 pm5.21ni 652 notnotnot 661 pm2.45 690 pm2.46 691 pm3.14 703 3ianorr 1241 nalequcoms 1451 equidqe 1466 ax6blem 1581 hbnt 1584 naecoms 1653 euor2 2000 moexexdc 2026 baroco 2049 necon3ai 2295 necon3bi 2296 eueq3dc 2767 difin 3208 indifdir 3227 difrab 3245 csbprc 3296 nelpri 3430 opprc 3599 opprc1 3600 opprc2 3601 eldifpw 4234 nlimsucg 4317 nfvres 5238 nfunsn 5239 ressnop0 5376 ovprc 5571 ovprc1 5572 ovprc2 5573 fiprc 6360 fidceq 6404 unfiexmid 6438 fzdcel 9135 bcpasc 9790 flodddiv4lt 10480 |
Copyright terms: Public domain | W3C validator |