Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfop Unicode version

Theorem dfop 3571
 Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1
dfop.2
Assertion
Ref Expression
dfop

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2
2 dfop.2 . 2
3 dfopg 3570 . 2
41, 2, 3mp2an 417 1
 Colors of variables: wff set class Syntax hints:   wceq 1285   wcel 1434  cvv 2602  csn 3400  cpr 3401  cop 3403 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-v 2604  df-op 3409 This theorem is referenced by:  opid  3590  elop  3988  opi1  3989  opi2  3990  opeqsn  4009  opeqpr  4010  uniop  4012  op1stb  4229  xpsspw  4472  relop  4508  funopg  4958
 Copyright terms: Public domain W3C validator