ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfse2 Unicode version

Theorem dfse2 4748
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2  |-  ( R Se  A  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
Distinct variable groups:    x, A    x, R

Proof of Theorem dfse2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-se 4116 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
2 dfrab3 3256 . . . . 5  |-  { y  e.  A  |  y R x }  =  ( A  i^i  { y  |  y R x } )
3 vex 2613 . . . . . . 7  |-  x  e. 
_V
4 iniseg 4747 . . . . . . 7  |-  ( x  e.  _V  ->  ( `' R " { x } )  =  {
y  |  y R x } )
53, 4ax-mp 7 . . . . . 6  |-  ( `' R " { x } )  =  {
y  |  y R x }
65ineq2i 3180 . . . . 5  |-  ( A  i^i  ( `' R " { x } ) )  =  ( A  i^i  { y  |  y R x }
)
72, 6eqtr4i 2106 . . . 4  |-  { y  e.  A  |  y R x }  =  ( A  i^i  ( `' R " { x } ) )
87eleq1i 2148 . . 3  |-  ( { y  e.  A  | 
y R x }  e.  _V  <->  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
98ralbii 2377 . 2  |-  ( A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
101, 9bitri 182 1  |-  ( R Se  A  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1285    e. wcel 1434   {cab 2069   A.wral 2353   {crab 2357   _Vcvv 2610    i^i cin 2981   {csn 3416   class class class wbr 3805   Se wse 4112   `'ccnv 4390   "cima 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-se 4116  df-xp 4397  df-cnv 4399  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404
This theorem is referenced by:  isoselem  5510
  Copyright terms: Public domain W3C validator