![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1i | Unicode version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eleq1 2142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: eleq12i 2147 eqeltri 2152 intexrabim 3936 abssexg 3963 snnex 4207 pwexb 4232 sucexb 4249 omex 4342 iprc 4628 dfse2 4728 fressnfv 5382 fnotovb 5579 f1stres 5817 f2ndres 5818 ottposg 5904 dftpos4 5912 frecabex 6047 oacl 6104 diffifi 6428 pitonn 7078 axicn 7093 pnfnre 7222 mnfnre 7223 0mnnnnn0 8387 nprmi 10650 bj-sucexg 10898 |
Copyright terms: Public domain | W3C validator |