![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineq2i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ineq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | ineq2 3168 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-in 2980 |
This theorem is referenced by: in4 3189 inindir 3191 indif2 3215 difun1 3231 dfrab3ss 3249 dfif3 3372 intunsn 3682 rint0 3683 riin0 3757 res0 4644 resres 4652 resundi 4653 resindi 4655 inres 4657 resiun2 4659 resopab 4682 dfse2 4728 dminxp 4795 imainrect 4796 resdmres 4842 funimacnv 5006 unfiin 6444 dmaddpi 6577 dmmulpi 6578 |
Copyright terms: Public domain | W3C validator |