ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djucomen Unicode version

Theorem djucomen 7072
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 6321 . . . 4  |-  1o  e.  _V
2 xpsnen2g 6723 . . . 4  |-  ( ( 1o  e.  _V  /\  A  e.  V )  ->  ( { 1o }  X.  A )  ~~  A
)
31, 2mpan 420 . . 3  |-  ( A  e.  V  ->  ( { 1o }  X.  A
)  ~~  A )
4 0ex 4055 . . . 4  |-  (/)  e.  _V
5 xpsnen2g 6723 . . . 4  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
64, 5mpan 420 . . 3  |-  ( B  e.  W  ->  ( { (/) }  X.  B
)  ~~  B )
7 ensym 6675 . . . 4  |-  ( ( { 1o }  X.  A )  ~~  A  ->  A  ~~  ( { 1o }  X.  A
) )
8 ensym 6675 . . . 4  |-  ( ( { (/) }  X.  B
)  ~~  B  ->  B 
~~  ( { (/) }  X.  B ) )
9 incom 3268 . . . . . 6  |-  ( ( { 1o }  X.  A )  i^i  ( { (/) }  X.  B
) )  =  ( ( { (/) }  X.  B )  i^i  ( { 1o }  X.  A
) )
10 xp01disjl 6331 . . . . . 6  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  A ) )  =  (/)
119, 10eqtri 2160 . . . . 5  |-  ( ( { 1o }  X.  A )  i^i  ( { (/) }  X.  B
) )  =  (/)
12 djuenun 7068 . . . . 5  |-  ( ( A  ~~  ( { 1o }  X.  A
)  /\  B  ~~  ( { (/) }  X.  B
)  /\  ( ( { 1o }  X.  A
)  i^i  ( { (/)
}  X.  B ) )  =  (/) )  -> 
( A B )  ~~  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B ) ) )
1311, 12mp3an3 1304 . . . 4  |-  ( ( A  ~~  ( { 1o }  X.  A
)  /\  B  ~~  ( { (/) }  X.  B
) )  ->  ( A B )  ~~  (
( { 1o }  X.  A )  u.  ( { (/) }  X.  B
) ) )
147, 8, 13syl2an 287 . . 3  |-  ( ( ( { 1o }  X.  A )  ~~  A  /\  ( { (/) }  X.  B )  ~~  B
)  ->  ( A B )  ~~  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B
) ) )
153, 6, 14syl2an 287 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B ) ) )
16 df-dju 6923 . . 3  |-  ( B A )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  A
) )
1716equncomi 3222 . 2  |-  ( B A )  =  ( ( { 1o }  X.  A )  u.  ( { (/) }  X.  B
) )
1815, 17breqtrrdi 3970 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    u. cun 3069    i^i cin 3070   (/)c0 3363   {csn 3527   class class class wbr 3929    X. cxp 4537   1oc1o 6306    ~~ cen 6632   ⊔ cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-er 6429  df-en 6635  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator