ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enssdom Unicode version

Theorem enssdom 6656
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
enssdom  |-  ~~  C_  ~<_

Proof of Theorem enssdom
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6638 . 2  |-  Rel  ~~
2 f1of1 5366 . . . . 5  |-  ( f : x -1-1-onto-> y  ->  f : x -1-1-> y )
32eximi 1579 . . . 4  |-  ( E. f  f : x -1-1-onto-> y  ->  E. f  f : x -1-1-> y )
4 opabid 4179 . . . 4  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }  <->  E. f  f :
x
-1-1-onto-> y )
5 opabid 4179 . . . 4  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-> y }  <->  E. f  f : x -1-1-> y )
63, 4, 53imtr4i 200 . . 3  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }  ->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. f  f : x
-1-1-> y } )
7 df-en 6635 . . . 4  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
87eleq2i 2206 . . 3  |-  ( <.
x ,  y >.  e.  ~~  <->  <. x ,  y
>.  e.  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y } )
9 df-dom 6636 . . . 4  |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
109eleq2i 2206 . . 3  |-  ( <.
x ,  y >.  e. 
~<_ 
<-> 
<. x ,  y >.  e.  { <. x ,  y
>.  |  E. f 
f : x -1-1-> y } )
116, 8, 103imtr4i 200 . 2  |-  ( <.
x ,  y >.  e.  ~~  ->  <. x ,  y >.  e.  ~<_  )
121, 11relssi 4630 1  |-  ~~  C_  ~<_
Colors of variables: wff set class
Syntax hints:   E.wex 1468    e. wcel 1480    C_ wss 3071   <.cop 3530   {copab 3988   -1-1->wf1 5120   -1-1-onto->wf1o 5122    ~~ cen 6632    ~<_ cdom 6633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545  df-rel 4546  df-f1o 5130  df-en 6635  df-dom 6636
This theorem is referenced by:  endom  6657
  Copyright terms: Public domain W3C validator