![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximi | Unicode version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eximi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eximi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1531 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eximi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1381 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 2eximi 1533 eximii 1534 exsimpl 1549 exsimpr 1550 19.29r2 1554 19.29x 1555 19.35-1 1556 19.43 1560 19.40 1563 19.40-2 1564 exanaliim 1579 19.12 1596 equs4 1654 cbvexh 1679 equvini 1682 sbimi 1688 equs5e 1717 exdistrfor 1722 equs45f 1724 sbcof2 1732 sbequi 1761 spsbe 1764 sbidm 1773 cbvexdh 1843 eumo0 1973 mor 1984 euan 1998 eupickb 2023 2eu2ex 2031 2exeu 2034 rexex 2411 reximi2 2458 cgsexg 2635 gencbvex 2646 gencbval 2648 vtocl3 2656 eqvinc 2719 eqvincg 2720 mosubt 2770 rexm 3348 prmg 3519 bm1.3ii 3907 a9evsep 3908 axnul 3911 dminss 4768 imainss 4769 euiotaex 4913 imadiflem 5009 funimaexglem 5013 brprcneu 5202 fv3 5229 relelfvdm 5237 ssimaex 5266 oprabid 5568 brabvv 5582 ecexr 6177 enssdom 6309 subhalfnqq 6666 prarloc 6755 ltexprlemopl 6853 ltexprlemlol 6854 ltexprlemopu 6855 ltexprlemupu 6856 bdbm1.3ii 10840 bj-inex 10856 bj-2inf 10891 |
Copyright terms: Public domain | W3C validator |