Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeqan12d Unicode version

Theorem eqeqan12d 2071
 Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
eqeqan12d.1
eqeqan12d.2
Assertion
Ref Expression
eqeqan12d

Proof of Theorem eqeqan12d
StepHypRef Expression
1 eqeqan12d.1 . 2
2 eqeqan12d.2 . 2
3 eqeq12 2068 . 2
41, 2, 3syl2an 277 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102   wceq 1259 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-cleq 2049 This theorem is referenced by:  eqeqan12rd  2072  eqfnfv  5293  eqfnfv2  5294  f1mpt  5438  xpopth  5830  f1o2ndf1  5877  ecopoveq  6232  xpdom2  6336  addpipqqs  6526  enq0enq  6587  enq0sym  6588  enq0tr  6590  enq0breq  6592  preqlu  6628  cnegexlem1  7249  neg11  7325  subeqrev  7446  cnref1o  8680  xneg11  8848  modlteq  9347  sq11  9492  cj11  9733  sqrt11  9866  sqabs  9909  recan  9936
 Copyright terms: Public domain W3C validator