ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr Unicode version

Theorem frectfr 6297
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions  F  Fn  _V and  A  e.  V on frec ( F ,  A ), we want to be able to apply tfri1d 6232 or tfri2d 6233, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frectfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Distinct variable groups:    g, m, x, y, A    z, g, F, m, x, y    g, V, m, y
Allowed substitution hints:    A( z)    G( x, y, z, g, m)    V( x, z)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2689 . . . . . . . 8  |-  g  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  g  e.  _V )
3 simpl 108 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. z
( F `  z
)  e.  _V )
4 simpr 109 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A  e.  V )
52, 3, 4frecabex 6295 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
65ralrimivw 2506 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. g  e.  _V  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
7 frectfr.1 . . . . . 6  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87fnmpt 5249 . . . . 5  |-  ( A. g  e.  _V  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  G  Fn  _V )
96, 8syl 14 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  G  Fn  _V )
10 vex 2689 . . . 4  |-  y  e. 
_V
11 funfvex 5438 . . . . 5  |-  ( ( Fun  G  /\  y  e.  dom  G )  -> 
( G `  y
)  e.  _V )
1211funfni 5223 . . . 4  |-  ( ( G  Fn  _V  /\  y  e.  _V )  ->  ( G `  y
)  e.  _V )
139, 10, 12sylancl 409 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( G `  y )  e.  _V )
147funmpt2 5162 . . 3  |-  Fun  G
1513, 14jctil 310 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  G  /\  ( G `
 y )  e. 
_V ) )
1615alrimiv 1846 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697   A.wal 1329    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686   (/)c0 3363    |-> cmpt 3989   suc csuc 4287   omcom 4504   dom cdm 4539   Fun wfun 5117    Fn wfn 5118   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  frecfnom  6298
  Copyright terms: Public domain W3C validator