ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveq12d Unicode version

Theorem fveq12d 5235
Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
fveq12d.1  |-  ( ph  ->  F  =  G )
fveq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fveq12d  |-  ( ph  ->  ( F `  A
)  =  ( G `
 B ) )

Proof of Theorem fveq12d
StepHypRef Expression
1 fveq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fveq1d 5231 . 2  |-  ( ph  ->  ( F `  A
)  =  ( G `
 A ) )
3 fveq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fveq2d 5233 . 2  |-  ( ph  ->  ( G `  A
)  =  ( G `
 B ) )
52, 4eqtrd 2115 1  |-  ( ph  ->  ( F `  A
)  =  ( G `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285   ` cfv 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rex 2359  df-v 2612  df-un 2986  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-iota 4917  df-fv 4960
This theorem is referenced by:  nffvd  5238  fvsng  5411  tfrlem3ag  5978  tfrlem3a  5979  tfrlemi1  6001  tfr1onlem3ag  6006  climshft2  10346
  Copyright terms: Public domain W3C validator